78 research outputs found

    Impact of some herbicides on the growth and the yield of common vetch (Vicia sativa L.)

    Get PDF
    Received: January 23rd, 2023 ; Accepted: April 2nd, 2023 ; Published: April 27th, 2023 ; Correspondence: [email protected] production and use of common vetch has great potential, but the lack of approved pesticides makes the success of cultivation difficult and unpredictable. The research was carried out on sandy soil at the Nyíregyháza Research Institute of the University of Debrecen in Hungary in April 2022. Five different herbicides, pendimethalin, metolachlor, flumioxazin, bentazon in doses 5 L ha-1 , 1.4 L ha-1 , 0.06 kg ha-1 , 2 L ha-1 , respectively, and imazamox in four different doses (0.6, 0.8, 1.0, 1.2 L ha-1 ) were applied with the consideration of the ranges specified in the Hungarian legislation. The results showed that the highest NDVI (Normalized Difference Vegetation Index) values were obtained with flumioxazin compared to the other treatments. The maximum harvested seed yield (194.1 kg ha-1 ) was obtained with the application of flumioxazin compared to the control treatment (132.5 kg ha-1 ). Flumioxazin was also the best as it had the fewest weeds per plot and the lowest phytotoxicity score. Although pendimethalin approached the cleaned and harvested average seed yield of the control plots with 121.3 kg ha-1 , it did not feature prominently in the other indicators. With regard to plant trash after cleaning of vetch seed, the highest plant trash (179.4 kg ha-1 ) was obtained with bentazon. Pendimethalin had the highest percentage ratio between seed yield ha-1 and plant trash ha-1 (61.8%), followed by flumioxazin (60.7%). The results also showed that there was a positive correlation between NDVI values and seed yield and a positive correlation between NDVI values and plant trash, while there was a negative correlation at the 0.01 level between NDVI values and phytotoxicity

    A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086

    Get PDF
    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 5.4 (540 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist

    Role of PACAP and VIP Signalling in Regulation of Chondrogenesis and Osteogenesis

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are multifunctional proteins that can regulate diverse physiological processes. These are also regarded as neurotrophic and anti-inflammatory substances in the CNS, and PACAP is reported to prevent harmful effects of oxidative stress. In the last decade more and more data accumulated on the similar function of PACAP in various tissues, but its cartilage- and bone-related presence and functions have not been widely investigated yet. In this summary we plan to verify the presence and function of PACAP and VIP signalling tool kit during cartilage differentiation and bone formation. We give evidence about the protective function of PACAP in cartilage regeneration with oxidative or mechanically stress and also with the modulation of PACAP signalling in vitro in osteogenic cells. Our observations imply the therapeutic perspective that PACAP might be applicable as a natural agent exerting protecting effect during joint inflammation and/or may promote cartilage regeneration during degenerative diseases of articular cartilage

    Transcriptional Evidence for the Role of Chronic Venlafaxine Treatment in Neurotrophic Signaling and Neuroplasticity Including also Glutatmatergic- and Insulin-Mediated Neuronal Processes.

    Get PDF
    OBJECTIVES: Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD). Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration. METHODS: Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment. RESULTS: Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity (Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes (Clstn2). Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1), a mechanism that has recently been linked to neuroprotection, learning and memory. CONCLUSIONS: Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in regulatory networks of motor cortical areas. These results are consonant with the synaptic (network) hypothesis of depression and antidepressant-induced motor recovery after stroke

    Phosphoinositide Regulation of Integrin Trafficking Required for Muscle Attachment and Maintenance

    Get PDF
    Muscles must maintain cell compartmentalization when remodeled during development and use. How spatially restricted adhesions are regulated with muscle remodeling is largely unexplored. We show that the myotubularin (mtm) phosphoinositide phosphatase is required for integrin-mediated myofiber attachments in Drosophila melanogaster, and that mtm-depleted myofibers exhibit hallmarks of human XLMTM myopathy. Depletion of mtm leads to increased integrin turnover at the sarcolemma and an accumulation of integrin with PI(3)P on endosomal-related membrane inclusions, indicating a role for Mtm phosphatase activity in endocytic trafficking. The depletion of Class II, but not Class III, PI3-kinase rescued mtm-dependent defects, identifying an important pathway that regulates integrin recycling. Importantly, similar integrin localization defects found in human XLMTM myofibers signify conserved MTM1 function in muscle membrane trafficking. Our results indicate that regulation of distinct phosphoinositide pools plays a central role in maintaining cell compartmentalization and attachments during muscle remodeling, and they suggest involvement of Class II PI3-kinase in MTM-related disease

    Steroid Hormone Control of Cell Death and Cell Survival: Molecular Insights Using RNAi

    Get PDF
    The insect steroid hormone ecdysone triggers programmed cell death of obsolete larval tissues during metamorphosis and provides a model system for understanding steroid hormone control of cell death and cell survival. Previous genome-wide expression studies of Drosophila larval salivary glands resulted in the identification of many genes associated with ecdysone-induced cell death and cell survival, but functional verification was lacking. In this study, we test functionally 460 of these genes using RNA interference in ecdysone-treated Drosophila l(2)mbn cells. Cell viability, cell morphology, cell proliferation, and apoptosis assays confirmed the effects of known genes and additionally resulted in the identification of six new pro-death related genes, including sorting nexin-like gene SH3PX1 and Sox box protein Sox14, and 18 new pro-survival genes. Identified genes were further characterized to determine their ecdysone dependency and potential function in cell death regulation. We found that the pro-survival function of five genes (Ras85D, Cp1, CG13784, CG32016, and CG33087), was dependent on ecdysone signaling. The TUNEL assay revealed an additional two genes (Kap-α3 and Smr) with an ecdysone-dependent cell survival function that was associated with reduced cell death. In vitro, Sox14 RNAi reduced the percentage of TUNEL-positive l(2)mbn cells (p<0.05) following ecdysone treatment, and Sox14 overexpression was sufficient to induce apoptosis. In vivo analyses of Sox14-RNAi animals revealed multiple phenotypes characteristic of aberrant or reduced ecdysone signaling, including defects in larval midgut and salivary gland destruction. These studies identify Sox14 as a positive regulator of ecdysone-mediated cell death and provide new insights into the molecular mechanisms underlying the ecdysone signaling network governing cell death and cell survival
    corecore