39 research outputs found

    A statistical look at Modeen's forecast of the population of Finland in 1934

    Get PDF
    Gunnar Modeen made the first cohort-component forecast for Finland in 1934. This was a time when demographic transition was just over, but that fact could not have been known at the time. Would it have made any difference if Modeen had had the tools of modern time-series analysis available? We find that the essential question of how to deal with changing trends would have still been difficult. However; the modern tools would have given the forecast user a realistic indicator of the uncertainty of the forecast being made. This suggests that in developing countries that are undergoing transition now, more effort should he paid to the analysis of uncertainty of forecasting

    A note on the use of anticipatory covariates in event history analysis

    Get PDF
    Anticipatory covariates are regressors whose values become known only after the value of the dependent variable has been ascertained. Hoem (1995) has given an informal discussion concerning the possible pitfalls in the use of such covariates in event history analysis. This paper complements Hoem’s findings by using simple linear regression as the framework. It turns out that complex patterns of bias may be introduced by the use of anticipatory covariates. In all cases it may not be possible to guarantee that the magnitude of the bias remains small. Therefore, extreme care is needed in interpreting results from studies that have relied on anticipatory covariates

    Farm Deaths in North Karelia

    Get PDF
    This study examined the effect of farm size on the mortality and survival of EasternFinnish farms in the late 1990s. Three different dimensions of farm size (i.e. hectaresoperated, number of milk cows, and hectares of forest) were compared. Data wereextracted from administrative records and covered all 4,527 active farms in NorthKarelia from 1995 to 1998. Results did not support the disappearing middle sizehypothesis presented by Weiss (1999). Farm size distributions were not bimodal.No empirical evidence was found of a process of polarisation into two centres ofattraction. As a whole, the analysis provides some support for the conclusion thatthe size of forest holding as measured by hectares of forest owned by farm does nothave an independent effect on the likelihood of survival. Its contribution dependson the other variables in the model

    Kuolevuus vaikuttavuuden mittarina

    Get PDF

    Muuttoliike ja vÀestön ikÀÀntyminen

    Get PDF

    Lipreading a naturalistic narrative in a female population : Neural characteristics shared with listening and reading

    Get PDF
    Publisher Copyright: © 2022 The Authors. Brain and Behavior published by Wiley Periodicals LLC.Introduction: Few of us are skilled lipreaders while most struggle with the task. Neural substrates that enable comprehension of connected natural speech via lipreading are not yet well understood. Methods: We used a data-driven approach to identify brain areas underlying the lipreading of an 8-min narrative with participants whose lipreading skills varied extensively (range 6–100%, mean = 50.7%). The participants also listened to and read the same narrative. The similarity between individual participants’ brain activity during the whole narrative, within and between conditions, was estimated by a voxel-wise comparison of the Blood Oxygenation Level Dependent (BOLD) signal time courses. Results: Inter-subject correlation (ISC) of the time courses revealed that lipreading, listening to, and reading the narrative were largely supported by the same brain areas in the temporal, parietal and frontal cortices, precuneus, and cerebellum. Additionally, listening to and reading connected naturalistic speech particularly activated higher-level linguistic processing in the parietal and frontal cortices more consistently than lipreading, probably paralleling the limited understanding obtained via lip-reading. Importantly, higher lipreading test score and subjective estimate of comprehension of the lipread narrative was associated with activity in the superior and middle temporal cortex. Conclusions: Our new data illustrates that findings from prior studies using well-controlled repetitive speech stimuli and stimulus-driven data analyses are also valid for naturalistic connected speech. Our results might suggest an efficient use of brain areas dealing with phonological processing in skilled lipreaders.Peer reviewe

    Working memory training restores aberrant brain activity in adult attention-deficit hyperactivity disorder

    Get PDF
    The development of treatments for attention impairments is hampered by limited knowledge about the malleability of underlying neural functions. We conducted the first randomized controlled trial to determine the modulations of brain activity associated with working memory (WM) training in adults with attention-deficit hyperactivity disorder (ADHD). At baseline, we assessed the aberrant functional brain activity in the n-back WM task by comparing 44 adults with ADHD with 18 healthy controls using fMRI. Participants with ADHD were then randomized to train on an adaptive dual n-back task or an active control task. We tested whether WM training elicits redistribution of brain activity as observed in healthy controls, and whether it might further restore aberrant activity related to ADHD. As expected, activity in areas of the default-mode (DMN), salience (SN), sensory-motor (SMN), frontoparietal (FPN), and subcortical (SCN) networks was decreased in participants with ADHD at pretest as compared with healthy controls, especially when the cognitive load was high. WM training modulated widespread FPN and SN areas, restoring some of the aberrant activity. Training effects were mainly observed as decreased brain activity during the trained task and increased activity during the untrained task, suggesting different neural mechanisms for trained and transfer tasks.Peer reviewe

    Altered cardiorespiratory response to exercise in overweight and obese women with polycystic ovary syndrome

    Get PDF
    In polycystic ovary syndrome (PCOS), cardiovascular risk is increased. Peak O2 uptake (V˙O2peak) predicts the cardiovascular risk. We were the first to examine the contribution of systemic O2 delivery and arteriovenous O2 difference to V˙O2peak in overweight and obese women with PCOS. Fifteen overweight or obese PCOS women and 15 age-, anthropometry-, and physical activity-matched control women performed a maximal incremental cycling exercise test. Alveolar gas exchange (volume turbine and mass spectrometry), arterial O2 saturation (pulse oximetry), and cardiac output (CO) (impedance cardiography) were monitored. Hb concentration was determined. Arterial O2 content and arteriovenous O2 difference (C(a-v)O2) (Fick equation) were calculated. Insulin resistance was evaluated by homeostasis model assessment (HOMA-IR). PCOS women had lower V˙O2peak than controls (40 ± 6 vs. 46 ± 5 mL/min/kg fat-free mass [FFM], P = 0.011). Arterial O2 content was similarly maintained in the groups throughout the exercise test (P > 0.05). Linear regression analysis revealed a pronounced response of CO to increasing V˙O2 in PCOS women during the exercise test: A ∆CO/∆V˙O2 slope was steeper in PCOS women than in controls (ÎČ = 5.84 vs. ÎČ = 5.21, P = 0.004). Eventually, the groups attained similar peak CO and peak CO scaled to FFM (P > 0.05). Instead, C(a-v)O2 at peak exercise was lower in PCOS women than in controls (13.2 ± 1.6 vs. 14.8 ± 2.4 mL O2/100 mL blood, P = 0.044). HOMA-IR was similar in the groups (P > 0.05). The altered cardiorespiratory responses to exercise in overweight and obese PCOS women indicate that PCOS per se is associated with alterations in peripheral adjustments to exercise rather than with limitations of systemic O2 delivery.Peer reviewe

    Population variation in brain size of nine-spined sticklebacks (Pungitius pungitius) - local adaptation or environmentally induced variation?

    Get PDF
    Abstract Background Most evolutionary studies on the size of brains and different parts of the brain have relied on interspecific comparisons, and have uncovered correlations between brain architecture and various ecological, behavioural and life-history traits. Yet, similar intraspecific studies are rare, despite the fact that they could better determine how selection and phenotypic plasticity influence brain architecture. We investigated the variation in brain size and structure in wild-caught nine-spined sticklebacks (Pungitius pungitius) from eight populations, representing marine, lake, and pond habitats, and compared them to data from a previous common garden study from a smaller number of populations. Results Brain size scaled hypo-allometrically with body size, irrespective of population origin, with a common slope of 0.5. Both absolute and relative brain size, as well as relative telencephalon, optic tectum and cerebellum size, differed significantly among the populations. Further, absolute and relative brain sizes were larger in pond than in marine populations, while the telencephalon tended to be larger in marine than in pond populations. These findings are partly incongruent with previous common garden results. A direct comparison between wild and common garden fish from the same populations revealed a habitat-specific effect: pond fish had relatively smaller brains in a controlled environment than in the wild, while marine fish were similar. All brain parts were smaller in the laboratory than in the wild, irrespective of population origin. Conclusion Our results indicate that variation among populations is large, both in terms of brain size and in the size of separate brain parts in wild nine-spined sticklebacks. However, the incongruence between the wild and common garden patterns suggests that much of the population variation found in the wild may be attributable to environmentally induced phenotypic plasticity. Given that the brain is among the most plastic organs in general, the results emphasize the view that common garden data are required to draw firm evolutionary conclusions from patterns of brain size variability in the wild.</p
    corecore