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A b s t r a c t

Anticipatory covariates are regressors whose values become known only after the value o f the 
dependent variable has been ascertained. Hoem (1995) has given an informal discussion concerning 
the possible pitfalls in the use o f such covariates in event history analysis. This paper complements 
Hoem’ s findings by using simple linear regression as the framework. It turns out that complex pat
terns o f bias may be introduced by the use o f anticipatory covariates. In all cases it may not be possi
ble to guarantee that the magnitude o f the bias remains small. Therefore, extreme care is needed in 
interpreting results from studies that have relied on anticipatory covariates.
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I n t r o d u c t i o n

Hoem ( 1995) gives a careful discussion of the dangers of anticipatory covariates 
in event history analysis. These are regressors whose values are determined only after 
the value of the dependent variable has been ascertained. In Hoem’s example educa
tion is used to explain divorce risk, but the level of education is known only at the 
end of the follow-up period. Hence, it is called “anticipatory” . The main result is that 
if the occurrence of divorce does not have a strong influence on the subsequent edu
cational history, then the use of the anticipatory education measure, instead of the ac
tual level of education at the time of (or before) marriage, tends to “dampen” the esti
mated association.

Hoem gives an informal but convincing argument to support his conclusions:
"... assume for instance that there is a negative gradient in the educational effect 
on divorce risks. Suppose that we select the lowest level of education as our basis 
of comparison... Women who have this level on our anticipatory variable have also 
had this level throughout, so their divorce risk should be correctly assessed by the 
practice that we follow. Women at higher final level of education must have been 
subject to the higher divorce risks that pertain to lower levels of education during 
part of their life, however, so our assessment of their divorce risk should be too 
high, as compared to what we would get if we had known their educational level at 
all times during their adult lives.”
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Especially valuable are his empirical calculations for the Swedish cohorts of 1959 
and 1964 for which both the true and anticipatory covariates are available. Hoem’s 
Table 1 shows that for those marrying at the age of 16- 17, and to a lesser extent those 
marrying at the age of 18- 19, the effect of education on the risk of divorce is severely 
overestimated by the use of anticipatory education measure as compared to the actual 
level of education at the time of divorce. The explanation seems to be that for those 
marrying young, divorce opens up a new chance to continue their education (Hoem
1995).

Although a formal discussion of the problem would be interesting, a related paper 
of Gail ( 1986) demonstrates that a discussion of general relative risk regression is dif
ficult and leads to complex mathematics. The purpose of this note is to complement 
Hoem ( 1995) at a more elementary level. We use some well-known aspects of ordi
nary least squares regression theory to discuss the use of anticipatory covariates. The 
level of presentation is similar to that of Hoem ( 1992). It turns out that there are other 
possible pitfalls besides those mentioned in Hoem ( 1995).

S in g le  c o v a r ia t e

Suppose Y is the dependent variable, such as some measure of divorce risk, and 
let X be an explanatory variable, such as education at the time of marriage. Assume 
that the true model is

Y = a + bX + e, ( 1)

where a and b are coefficients, and e is an error term (with mean zero and independ
ent of X), so that the conditional expectation of Y given X is of the form E[Y | X] = a 
+ bX. Suppose Z measures the same property as X (say, education), but at a later time, 
when Y (the possible occurrence of divorce) has already become known. Assume that

Z = c + dY + eX + r|, (2)

where c, d and e are coefficients, and q is an error term independent of X, Y and e.
Often we would have e = 1 in (2). For example, suppose Y is centered to have a 

mean of zero. Then, later education Z would be equal to the earlier education X plus 
the average increment c, as modified by the possible positive or negative effect of Y 
and by residual random variation q. Or, the increment would be Z -  X = c + dY + q, 
and therefore, Z = c + dY + X + q. However, if earlier education would also influ
ence the increment with a coefficient e’ , then we would have Z -  X = c + dY + e’X + 
q, and Z = c + dY + eX + q, where e = 1 + e\ It will be useful to keep the possibility 
of e * 1 open.

Suppose that we do not know the value of X, so instead of ( 1) we fit the model

E[Y | Z] = a + PZ.

If the first two moments of Y and Z are known, the least squares estimate of the slope 

' S p -  C o v (Y ’ Z )
Var(Z)

(Here, and in the sequel, we will phrase our arguments in terms of the true population 
moments. Under mild regularity conditions the actual empirical least squares estima
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tors can be shown to converge to these quantities, when sample size approaches infin
ity.) Under ( 1) and (2) we have

Cov(Y, Z) = Cov(a + bX + e, c + d(a + bX + e) + eX + rp 
= b(db + e)Var(X) + dVar(e),

and

Var(Z) = (db + e)2Var(X) + d2Var(e) + Var(ri).

Therefore, we have the general representation

p k j (db + e)Var(X) + dVar(e)/b ^

(db + e)2Var(X) + d2Var(e) + Var(ri)

By taking d = 0 in (3), i.e., by assuming that the dependent variable does not in
fluence the evolution of X over time, we get

e2Var(X)
p = b/e {

e 2V a r ( X )  +  V a r O p

Requiring further that e = 1 yields a form of the principal result of Hoem ( 1995), or 

Var(X)
P = b { ------------------------------------------------------------------------- (4)

Var(X) + Var(ri)

so P has the same sign as b, but I p I < I b I . In other words, the use of an anticipatory 
regressor in place of the correct one will bias its coefficient towards zero.

Note however, that (4) requires not only that d = 0, but also that e = 1. For exam
ple, if past education had a negative effect on the subsequent increment of education 
(or e < 1) and Varfq) were small, then the use of an anticipatory education measure 
might even lead to an overestimation of the effect of education on divorce risk.

A reader familiar with measurement error models will recognize (4) as the classi
cal result concerning regression coefficients when explanatory variables have been 
measured unbiasedly, but with some random error (Fuller 1987, 3). In our case r| cor
responds to measurement error and causes the bias.

Hoem ( 1995) points out that if divorce influences later opportunities of education, 
then the use of anticipatory covariates may ruin the whole regression. This can be seen 
in our framework. Take for example e = 1 and suppose d = - 1/b (the exact equalities 
are not important here; we use them just to get a simple formula). Then,

Var(e)
P = -b {-

Var(e) + b2Var(r|)

so even if we would have Var(r|) = 0, the least squares estimate P = -b would be quite 
different from b!
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The regression formulation can be used to derive many other properties of the an
ticipatory covariate modeling. When several covariates are present in regression, it is 
possible that the use of anticipatory versions for some of them may bias the estimates 
of the others. The intuitive reason for this is that the anticipatory covariates may “eat 
up” some of the effect of the other covariates.

Consider, for example, the case in which divorce is influenced by both education 
X, and birth year X2, so

Y = a + b,X1+ b2X2 + e. (5)

Suppose that the later increment in education is similarly influenced by both:

Z = c + dY + e^ , + e2X2 + ty

Again, we would often -  but not always -  have e, = 1.
Suppose we don’t have X, available and we use least squares to fit the model

E[Y IZ, X2] = a + p,Z + p2X2.

If the first two moments of Y, Z and X, are known, an analogue of (3) can be given, 
but it is more complicated because it involves both P, and P2. We omit those details, 
but present a simpler discussion of a special case, based on the representation

Z = c + da + (db( + e ^X, + (db, + e2)X2 + de + r|.

Let us consider the simplest case of d = 0, so Z = c + e^ , + e,X, + r|. Note first 
that the role of r| is the same as before: it biases estimates towards zero. Let us sim
plify further, and take r| = 0 also. In this case Z and X, span the same space as X! and 
X,, so the use of Z and X, produces exactly the same fit as the use of X ( and X,. We 
can now write the conditional expectation of Y given X, and X, in terms of the new 
parameters a, P,, and p2, as follows

E[Y | X,, X2] = a + p,c + p.e.X, + (P,e2 + p2)X2. (6)

Using model (5) we can also write

E[Y | X,, X2] = a + b,X, + b2X2. (7)

The coefficients of X, and X, must be equal under both representations (6) and (7), so 
we must have

p, = b,/e,;P2 = b2- b |e2/e1.

We see that even if e, = 1, the coefficient p, will remain biased for br
For example, if later birth cohorts increase their educational level more than earli

er cohorts (or e, > 0). and. say, education decreases divorce risk (b, < 0), then the 
effect of birth cohort on divorce risk (or b,) will be overestimated, if anticipatory Z is 
used in place of Xr The degree of bias depends on e,. The intuitive cause for the bias 
is that the later education Z measures not only the earlier education X,, but also the 
birth cohort effect X2.

Several covariates



Above, we have tried to complement the results of Hoem ( 1995) by simple regres
sion arguments. Slight modifications may be necessary when applying the results to 
other relative risk models. We suspect the situation may be analogous to that studied 
by Gail ( 1986). He has shown, for example, that omitting a “balanced” covariate from 
regression (i.e., a covariate that has the same distribution among the exposed and the 
nonexposed in an epidemiological study) does not cause bias in the kind of linear model 
we have considered, but it does cause bias towards zero in Cox regression (Gail 1986, 
6). A similar effect might well exist in our setting.

The motive for using anticipatory covariates in relative risk regression is that proper 
data may not be available. In some cases a researcher may be able to argue that, say, 
the level of education cannot have changed during the follow-up period because the 
participants had passed the typical formative years. In this case the use of anticipatory 
data may be quite reasonable. However, in view of the possibility of very complex 
patterns of bias caused by anticipatory covariates, it may often be safer to conclude 
that the data do not permit the intended study than to try to force through an analysis 
whose validity cannot be guaranteed.

Above we have illustrated just a few of the possible biases. In particular, no cor
relations between £ and r| were considered. The problems are compounded, if we ad
mit the possibility that some important covariates have not been measured at all.
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Discussion
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