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Abstract

The development of treatments for attention impairments is hampered by limited

knowledge about the malleability of underlying neural functions. We conducted the

first randomized controlled trial to determine the modulations of brain activity associ-

ated with working memory (WM) training in adults with attention-deficit hyperactiv-

ity disorder (ADHD). At baseline, we assessed the aberrant functional brain activity in

the n-back WM task by comparing 44 adults with ADHD with 18 healthy controls

using fMRI. Participants with ADHD were then randomized to train on an adaptive

dual n-back task or an active control task. We tested whether WM training elicits

redistribution of brain activity as observed in healthy controls, and whether it might

further restore aberrant activity related to ADHD. As expected, activity in areas of

the default-mode (DMN), salience (SN), sensory-motor (SMN), frontoparietal (FPN),

and subcortical (SCN) networks was decreased in participants with ADHD at pretest

as compared with healthy controls, especially when the cognitive load was high. WM

training modulated widespread FPN and SN areas, restoring some of the aberrant

activity. Training effects were mainly observed as decreased brain activity during the

trained task and increased activity during the untrained task, suggesting different

neural mechanisms for trained and transfer tasks.
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1 | INTRODUCTION

Adjusting to the massive information flow in the modern society can

be a formidable challenge particularly for individuals with attention

deficits whose cognitive processes are prone to overload

(Klingberg, 2008). The occurrence of attention-deficit hyperactivity

disorder (ADHD) that is typically expressed in difficulties to pay atten-

tion, tendencies to act without regard to the consequences, and

excessive activity level, has been continuously increasing

(e.g., Collins & Cleary, 2016). ADHD is now widely recognized as a

multifactorial large-scale brain connectivity disorder that is coupled

with various cognitive impairments (e.g., inhibition, Barkley, 1997;

executive function, Boonstra, Oosterlaan, Sergeant, & Buitelaar, 2005;

working memory (WM), Alderson, Kasper, Hudec, & Patros, 2013).

There is evidence that, at least in some individuals, the symptoms can

be remediated and some of the altered brain activity recovered using

the gold-standard stimulant treatments (Biehl et al., 2016; Cubillo

et al., 2014; Rubia et al., 2014). Nonetheless, given that stimulant

treatments are not effective in up to 30% of the ADHD population

(Banaschewski, Roessner, Dittmann, Janardhanan Santosh, &

Rothenberger, 2004. Toomey, Sox, Rusinak, & Finkelstein, 2012),

alternative and complementary treatment approaches, such as cogni-

tive training, have also gathered considerable interest (for a meta-

analysis, see Cortese et al., 2015).

Many of the proposed cognitive interventions implemented in

ADHD populations have been targeting WM. WM involves the con-

scious maintenance and manipulation of current information, and it is

considered as one of the core functions of human cognition

(D'Esposito & Postle, 2015). Critically, WM is often impaired in ADHD

(e.g., Martinussen, Hayden, Hogg-Johnson, & Tannock, 2005), with

potential downstream effects to other cognitive domains as well

(Alderson et al., 2013). While the potential benefits of cognitive inter-

ventions in ADHD and its controversies have been widely investi-

gated and discussed in the behavioral domain (Cortese et al., 2015), it

remains unclear whether and how cognitive training might influence

brain functions in ADHD (Klingberg, 2010).

One of the most widely used WM tasks in clinical research

(Jacola et al., 2014), brain imaging (Owen, McMillan, Laird, &

Bullmore, 2005; Wang et al., 2019), cognitive training (Au et al., 2015;

Soveri et al., 2017b), as well as ADHD studies (see below) is the n-

back task originally developed by Kirchner (1958). The n-back task is a

continuous performance task that requires the participant to decide

whether the current stimulus matches the one n steps back in the

stimulus sequence. Increased load in the task typically reflects

decreased hit rates and increased reaction times. Although n-back

performance correlates only weakly with other commonly used WM

tasks (Kane, Conway, Miura, & Colflesh, 2007; Redick &

Lindsey, 2013), evidence from latent factor analyses has indicated that

n-back tasks are valid indicators of general WM function (Schmiedek,

Lövden, & Lindenberger, 2014). Brain areas where the activity is

increased together with the increased WM load in the n-back tasks

encompasses the frontoparietal (FPN), salience (SN), sensory-motor

(SMN), and subcortical (SCN) brain networks (Owen et al., 2005;

Wang et al., 2019; Yaple & Arsalidou, 2018). These studies have

shown a large overlap between the activation patterns associated

with n-back variants with different types of stimuli (e.g., visuospatial,

numeric, object). At the same time, different types of n-back tasks

deactivate the default-mode network (DMN) areas in the posterior

cingulate cortex (PCC), precuneus, ventromedial prefrontal cortex

(VMPFC), inferior temporal, and lateral occipital/occipito-parietal cor-

tex (e.g., Pallesen, Brattico, Bailey, Korvenoja, & Gjedde, 2009; see

Sonuga-Barke & Castellanos, 2007 for a review). These activity pat-

terns considerably overlap with those observed in other types of WM

tasks (Daniel, Katz, & Robinson, 2016; Emch, von Bastian, &

Koch, 2019; Rottschy et al., 2012; Wager & Smith, 2003). Indeed,

after more than 1,000 brain imaging studies focusing on WM (see

NeuroSynth database for an extensive meta-analysis), it can now be

concluded that detailed process-wise regional divisions based on the

WM component processes are only tentative (see also Bledowski,

Kaiser, & Rahm, 2010; Eriksson, Vogel, Lansner, Bergstrom, &

Nyberg, 2015; Nee & Jonides, 2008).

In their meta-analysis of eight experiments, Cortese et al. (2012)

reported hypoactivation in the FPN, SN, and SMN in participants with

ADHD during performance of WM tasks. Many of the studies

included in this meta-analysis as well as more recent studies relied on

n-back tasks. For instance, in their seminal study, Valera, Faraone,

Biederman, Poldrack, and Seidman (2005) reported hypoactivity in

cerebellar, occipital and prefrontal areas in twenty participants with

ADHD as compared with a similar-sized control group, and their later

study replicated these findings with a larger sample (Valera

et al., 2010). Besides these areas, hypoactivation in participants with

ADHD has been reported also in the parietal cortex (see for example,

Bayerl et al., 2010; Brown et al., 2012; Cubillo et al., 2014; Kobel

et al., 2009; Mattfeld et al., 2015). Overall, aberrant activity in the so-

called task-positive brain networks appears to be a robust neural

marker in ADHD, despite the lack of group differences in task perfor-

mance (e.g., Massat et al., 2012; Valera et al., 2005). ADHD has also

often been associated with DMN activity (see Brown et al., 2012 for a

study with the n-back task, and Sonuga-Barke & Castellanos, 2007,

and Bozhilova, Michelini, Kuntsi, & Asherson, 2018 for general

reviews). So far, brain imaging research of ADHD has largely focused

on studies in children and adolescents, while the adult research

remains underexploited (Cortese et al., 2012).

There is evidence that stimulant medication results in restoration

effects in WM-related brain networks in ADHD populations (Biehl

et al., 2016; Cubillo et al., 2014; Kobel et al., 2009; Rubia et al., 2014).

It has been suggested that the most consistent stimulant-related

recovery occurs in the inferior frontal gyrus (IFG)/Insula (see Rubia

et al., 2014 for a meta-analysis). However, it is still not clear whether

and how brain dysfunctions underlying attention deficits respond to

cognitive interventions (Olesen, Westerberg, & Klingberg, 2004). In

their preliminary study on 18 adolescents with ADHD, Stevens,

Gaynor, Bessette, and Pearlson (2016) showed changes in FPN after

training on the Sternberg task. However, given the lack of a control

group, it remains unclear whether those observed changes were truly

training-related. Recently, de Oliveira Rosa et al. (2019) published
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another small-scale pilot study (n = 10 for the training group),

suggesting that in children with ADHD, computerized cognitive train-

ing modulates activity in the insula/putamen and thalamus/pallidus

during the n-back task. As the current knowledge can be considered

only preliminary, we set out to perform the first randomized con-

trolled WM training study with an Active control group to examine

the malleability of aberrant brain function in adults with ADHD. In

healthy adults, practice effects with cognitive tasks are observed both

as increases as well as decreases in widespread brain networks

(Chein & Schneider, 2005), extended prefrontal activation changes

being a unique factor in WM training studies (Salmi et al., 2018). It

should be noted, however, that the systematic activation increase/

decrease patterns are not well understood (Salmi et al., 2018a), as

trained and transfer tasks are not separately assessed in fMRI studies

on WM training (but see Dahlin, Neely, Larsson, Backman, &

Nyberg, 2008).

Based on the prior WM training studies in healthy participants

and ADHD studies using the n-back paradigm, we formulated three

main hypotheses: (a) In healthy participants, prolonged training at

capacity limits in ADHD participants results in redistribution

(i.e., modulation of the existing WM network) of the task-related brain

networks rather than reconfiguration of the WM-related brain activity

(i.e., recruitment of new areas that are not activated at baseline; for a

review and a meta-analysis, see Constantinidis & Klingberg, 2016,

Salmi et al., 2018a). More specifically, based on a recent meta-analysis

of studies performed in healthy adults, we expected that training-

related changes in brain activity would be observed particularly in the

dorsolateral prefrontal cortex (DLPFC, Salmi et al., 2018a). (b) We also

expected to see restoration of aberrant brain activity that distin-

guishes participants with ADHD from healthy controls based on previ-

ous work (Cortese et al., 2015). (c) Our pre-post design included

trained and untrained variants of the n-back task, and thus, we aimed

to investigate potential differential neural mechanisms for trained

tasks and structurally similar near-transfer tasks. Based on earlier

work (see Salmi et al., 2018a), we expected to observe differential

training effects in trained task and untrained task given that cognitive

skill learning elicited by training tends to be limited to the trained

tasks (Bhandari & Badre, 2018). We also collected behavioral data to

monitor training progress and its effects on pre-post behavioral mea-

sures, and we expected to see a similar near-transfer pattern as typi-

cally observed in healthy adults (see Soveri et al., 2017b).

2 | MATERIALS AND METHODS

2.1 | Participants

Forty-four individuals with ADHD and 18 healthy controls participated

in this study (see Table 1). The participants with ADHD were recruited

at the Neuropsychiatry outpatient clinic in the Helsinki University Cen-

tral Hospital and at two private clinics in the Helsinki metropolitan area

(Diacor Healthcare Services in Helsinki and ProNeuron in Espoo). All

patients were pre-screened at the clinic. The healthy controls were rec-

ruited mainly via email lists at vocational schools, polytechnics, and

TABLE 1 Demographics, symptoms, and task performances in (untrained) ADHD participants and healthy controls

Variable ADHD (n = 39) Healthy controls (n = 18) p

Demographics

Age Years 28.6 (5.4) 29.61 (8.2) .65

Education Level 4.7 (2.2) 6.4 (1.8) .02

Verbal skills (WAIS vocabulary test) Standard score 11.1 (2.6) 11.7 (1.8) .34

Non-verbal skills (WAIS matrix reasoning) Standard score 12.3 (2.9) 13.6 (2.2) .11

ADHD screening tests

ASRS-A Sum score 14.9 (3.7) 7.2 (3.3) <.001

ASRS-B Sum score 27.2 (7.9) 14.5 (6.5) <.001

ASRS total Sum score 42.1 (10.8) 21.7 (9.4) <.001

BRIEF Sum score 75.8 (20.3) 32.2 (18.0) <.001

Cognitive tasks

Dual n-back Max level 2.2 (0.6) 2.1 (0.6) .24

Single n-back—spatial Hitrate (%) 89 (12) 89 (8) .67

Single n-back—verbal Hitrate (%) 89 (12) 90 (8) .60

Running memory—spatial Lists correct 3.2 (2.1) 4.2 (2.0) .09

Running memory—verbal Lists correct 3.3 (1.7) 3.3 (1.9) .20

Digit span Sum score 11.3 (3.0) 13.7 (3.0) <.01

CPT—Errors of omission Error score 2.2 (3.8) 1.28 (1.6) .23

CPT—Errors of commission Error score 17.1 (7.2) 9.3 (4.7) <.001

Note: p represents the group difference. In education level, 0 is no degree, 4 is high-school, and 9 is PhD.
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universities, and via personal contacts of the authors. Predefined target

for the sample size of the training study was 40 participants (20 per

condition). The sample size was deemed as sufficient based on previous

fMRI studies with cognitive training intervention (Salmi et al., 2018a).

Participants had to be native Finnish speakers, have normal or

corrected-to-normal vision, sufficient hearing, and meet the eligibility

criteria for MRI. They were excluded if they had any other severe psy-

chiatric or neurological disorders than ADHD including head trauma

demanding treatment, substance abuse or other addictions. The psychi-

atrists recruiting the participants with ADHD used the Structured

Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and Mini-

International Neuropsychiatric Interview (M.I.N.I.) to exclude comorbid

disorders as part of their regular clinical assessment. The study was

reviewed and approved by the Ethics Committee for Gynecology and

Obstetrics, Pediatrics and Psychiatry of the Helsinki University Hospi-

tal. All participants gave their informed consent according to the Decla-

ration of Helsinki. The participants were reimbursed with 60 € if they

participated only to the first measurement, or 240 € if they also com-

pleted the intervention and posttest.

ADHD was diagnosed according to the Diagnostic and Statistical

Manual of Mental Disorders, Fourth Edition (DSM-IV). In addition to

the original diagnostic interview, we conducted the Conners' Adult

ADHD Diagnostic Interview for DSM-IV to confirm the current status

(Epstein, Johnson, & Conners, 2001). The patients met criteria for

either only inattention or both inattention and hyperactivity. Of the

included participants, three had migraine, one had hypothryroidism,

and two had experienced mild epilepsy symptoms in childhood but

with no treatment needed since that time. In addition to stimulants

(N = 35), three had been prescribed medication for migraine (two of

them use the medicine based on the need and one had prohylactic

treatment), one for mild depression (selective serotonin re-uptake

inhibitor, regular use), and one for hypothyroidism (regular use). Out

of the participants that had been prescribed stimulants, seven men-

tioned that they are changing the dose depending on the need. More-

over, eight of the participants that had been prescribed stimulants

reported that they are not using the medicine every day or may some-

times take breaks (e.g., during the holidays). One participant reported

that currently he/she does not use the stimulants at all, even though

he/she has received the prescription. Out of the stimulant users,

seven have had this medicine for less than a year. Participants using

stimulants had a 24-hr wash-out prior to the pre-post fMRI sessions.

Two participants dropped out from the study after the pretest, and

three during the training period due to scheduling difficulties (two

from the Experimental group and one from the Active control group).

The data of one additional participant from the Active control group

had to be excluded due to poor quality MRI. Participants with ADHD

who were on stimulant medication continued their treatment during

the training intervention. The Experimental group and the Active con-

trols did not differ with respect to their stimulant medication (18/20

participants in the Experimental group and 17/18 Active controls

were taking stimulants). The healthy controls served as controls only

for the pretest, thus being used to test for potential group differences

in WM-related activity.

2.2 | Self-ratings

Adult ADHD Self-Report Scale (ASRS) and Behavior Rating Inventory

of Executive Function (BRIEF) adult version were used to self-rate the

ADHD symptoms and related everyday attention deficits, respectively

(Table 1).

2.3 | Cognitive measures

The computerized test battery lasted approximately one and a half

hours (see Table 1). The healthy controls completed the test battery

once, and the participants with ADHD completed the tasks before

and after the training period.

2.3.1 | Dual n-back task

Due to its wide use in brain imaging, cognitive training, and ADHD

research (see Section 1), we selected the n-back task as our training

task, as well as an outcome measure before and after training

(Jaeggi, Buschkuehl, Jonides, & Perrig, 2008). Despite that the

behavioral training and transfer outcomes appear to be quite similar

regardless of whether participants train on single or dual n-back

tasks (Au et al., 2015), we selected a dual task for two reasons. First,

we wanted to test whether the behavioral training results were simi-

lar to our previous dual n-back training study in a neurotypical popu-

lation (Soveri et al., 2017a). Second, we assumed that the dual

n-back training would require more widespread cognitive and neural

processes as compared to single n-back training, thus resulting in

more extensive changes in brain activity (see Thompson, Waskom, &

Gabrieli, 2016). In the dual n-back task, participants were presented

with simultaneous phonological and visuospatial stimulus streams.

The phonological stream included eight different spoken Finnish syl-

lables (/dy/, /ki/, /le/, /nä/, /pö/, /ro/, /su/, or /ta/) while the visuo-

spatial stimuli were white squares appearing in eight possible

locations on the screen (at top middle, bottom middle, or any of the

four left or right corners from the fixation that was at the center).

Syllables and squares were presented at the same time (500 ms stim-

ulus presentation, 2,500 ms inter-stimulus interval). The task was to

indicate whether the current stimulus matched the one presented n-

trials back. Participants were required to respond to both stimulus

streams, that is, they had to press the right key if the syllable mat-

ched the one presented n trials back, and the left button if the spatial

location of the square matched with the square location n trials back.

On each trial, a target could appear in the phonological or visuospa-

tial stream, or both. The task consisted of 10 blocks of sequences,

each containing 20 squares and 20 syllables. Total duration of the

dual n-back task in the pretest session was about 12 min. The task

was adaptive, that is, the difficulty was continuously adjusted

according to individual's performance. When 90% accuracy was

reached, n was increased by 1 in the next block. If the accuracy rate

fell below 75% on either stimulus type, n was decreased by 1. The
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level of n could vary between 1 and 9. The session began with a

2-back sequence but changed to 1-back if the accuracy fell below

75%. At the end of the session, a result screen was displayed show-

ing the highest level of n achieved during the session and the num-

ber of blocks completed for each level of n. Given that the task

difficulty varied as a function of each participant's task performance

(meaning that accuracy or RT metrics are not comparable across par-

ticipants), we used the maximum n-back level achieved per session

as the main dependent variable (cf. Soveri et al., 2017b).

2.3.2 | Single n-back tasks

Given that the transfer effects are considered to be relatively narrow

(Kirchner, 1958; Melby-Lervag, Redick, & Hulme, 2016; Soveri

et al., 2017b), we used two single n-back variants of the trained dual

n-back task as separate outcome measures during the pre-post fMRI

sessions, namely a version with visuospatial material (locations) and

another one with visually presented digits. In the visuospatial task,

white squares were presented in eight locations. In the numerical vari-

ant, the stimuli were digits from 1 to 9 presented at the center of the

screen. The blocks began with an instruction of the task type (n-back

level). After the instruction, each location/digit remained on the

screen for 1,500 ms, with an interstimulus interval (ISI) of 450 ms.

Both task variants included four different n-back levels (0-back to

3-back) and the blocks for each n-back level presented in

counterbalanced order (0-back, 1-back, 2-back, 3-back, 3-back,

2-back, 1-back, 0-back, etc.). Other than the training task, the single

n-back tasks were not adaptive and two response buttons (match and

non-match) in load levels higher than 0-back were used. In the 0-back

task, the participants pressed the left button for each stimulus. There

were 10 trials requiring a response in each block, of which two trials

were match trials (targets) on average. There were five blocks per load

level for both digit and visuospatial tasks, and thus, the single n-back

task lasted about 13 min. Accuracy rates (proportion of hits) averaged

across the 1-back, 2-back, and 3-back levels were used as the depen-

dent variables. The single n-back tasks were performed only during

the fMRI experiment.

2.3.3 | Digit and visuospatial running memory

Participants were presented with sequences of digits or visuospatial

stimuli of varying length (Pollack, Johnson, & Knaff, 1959). In the

verbal version, the sequences consisted of digits (1–9), and in the

visuospatial version, the stimuli consisted of squares appearing at

eight different locations. Each cross was visible in the matrix for

1,500 ms. The inter-stimulus-interval was 500 ms, during which the

matrix was empty. The stimuli were pseudo-randomized into

28 sequences. The sequence length varied from seven to fourteen,

with the exception of two four-unit catch sequences. Each time a

sequence ended, the participants repeated the digits or squares by

clicking on corresponding numbers in the screen in the correct order,

or by clicking on the correct locations with the mouse. In both tasks,

the participants did not know the sequence length beforehand. The

dependent variables were the total number of correctly recalled

location/digit sequences.

2.3.4 | Digit span

In the digit span task, participants were instructed to repeat

sequences of digits in the same (forward) or reversed (backward)

order (Blankenship, 1938). Sequence length varied between 2 and

9 digits in the forward tasks, and 2 to 8 digits in the backward tasks.

Digits were presented with the interval of one per second. Two

sequences of each length were administered. When the participant

answered correctly to one of the sequences, the sequence length was

increased by one digit. The task ended once the participant made two

errors in a row. The dependent variable was the total number of cor-

rectly reported sequences (averaged across the forward and backward

versions).

2.3.5 | Continuous performance test

In the continuous performance test (CPT) task, participants were pres-

ented with a sequence of letters with fixed alternating intervals

(1,000, 2000, and 3,000 ms) (Rosvold, Mirsky, Sarason, Bransome, &

Beck, 1956). They were required to press the space bar for each let-

ter, except for the letter X (probability 9.7%). There were 360 trials,

and the duration of the task was approximately 14 min. Two depen-

dent variables were used, omission errors as a proxy for inattention,

and commission errors, as a proxy for impulsivity.

2.4 | Intervention procedure

The training period lasted for 5 weeks (cf. Figure 1, Figure S1, and

Soveri et al., 2017a for a similar behavioral study in healthy adults).

Participants in both intervention groups trained three times a week,

once in the laboratory (Department of Psychology, University of Hel-

sinki) and twice at home. A minimum of 10 sessions were required to

be invited to the posttest, and the time spent on training was the

same in both groups (�25 min per session). Pre/posttest sessions and

training were supervised by different experimenters. A lottery-based

randomization (20 tickets for the Experimental group and 20 for the

Active controls) was performed individually for each participant after

the pretest by the person who was about to supervise the training

session. Thus, the experimenters conducting the assessments as well

as the imaging sessions were blind with respect to the group member-

ship of the participant. The participants themselves were also

unaware of whether they were in the Experimental group or Active

control group. Participants received a laptop computer to conduct the

practice at home, but they were also allowed to use their own

computer.
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2.4.1 | Experimental group

The participants in the Experimental group were trained on the dual

n-back task that was the same as the one used in the assessment bat-

tery, except that the number of blocks in each training session was

20 instead of 10. After each training session, participants completed a

questionnaire in which they indicated the maximum n-level they had

achieved, as well as their level of motivation and arousal during the

training session using a 10-point Likert scale (where 0 = very low and

10 = very high). In addition, the program generated a data logfile that

was stored on the computer. Each participant performed at least

11 training sessions, and 11 participants completed all 15 training ses-

sions (mean number of sessions = 13.8, SD = 1.7, see Figure S2).

2.4.2 | Active control group

The Active controls played the “Bejeweled II” video game by PopCap

Games. In this 2004 computer game, the task is to score points by

swapping a jewel with an adjacent one to create a chain of jewels of

the same color. The game for the Active controls was selected based

on its limited demands on WM, general appeal to a wide audience,

and its successful use in prior studies (e.g., Soveri et al., 2017a). Partic-

ipants played the game for about 25 min in every training session, and

they also recorded their highest scores in personal training logs.

Everyone completed at least 11 sessions, and 15 participants com-

pleted all 15 training sessions (mean number of sessions = 14.6

[SD = 1.0], see Figure S2).

2.5 | Behavioral analyses

Baseline differences comparing the healthy controls and participants

with ADHD, as well as between the two training groups consisting of

participants with ADHD, were assessed using independent samples t-

test and analyses of variance (ANOVA). Within the trained group, we

tested for changes in performance or symptom scores from pretest to

posttest using paired-samples t-tests. Furthermore, the effects of

training were examined using analyses of covariance with posttest

performance as the dependent variable, intervention group as fixed

factor, and pretest performance as the covariate. As the influence of

dual n-back training on symptoms is shown to be associated with

training progress (Jones, Katz, Buschkuehl, Jaeggi, & Shah, 2018), the

participants in the Experimental group were divided into high-gainers

and low-gainers based on a median split on their dual n-back improve-

ment from pretest to posttest to examine the effect of training on

symptoms.

2.6 | MRI acquisition

We collected fMRI data at Advanced Magnetic Imaging Centre (Aalto

University) using a Siemens MAGNETOM Skyra 3 T scanner (Siemens

Healthcare, Erlangen, Germany) which was mounted with a

30-channel head coil. We conducted two functional runs using a

gradient-echo echo planar imaging sequence. In fMRI, the following

imaging parameters were used: TR 1.9 s, voxel matrix 64 × 64, slice

thickness 3.0 mm, in-plane resolution 3.1 mm × 3.1 mm × 3.0 mm.

Timing of the fMRI scanning was random in relation to the presenta-

tion of the stimuli, and the first four volumes in each image time series

were discarded to stabilize magnetization. Functional measurements

consisted of 816 volumes total (408 for the visuospatial and digit n-

back tasks). Besides fMRI, a structural MR image with a T1-weighted

MPRAGE sequence (TR 2.5 s, voxel matrix 256 × 256, slice thickness

1 mm) was acquired before the third functional run for registration

purposes. The participants did not report any considerable harms fol-

lowing the MRI.

The tasks presented during fMRI experiment were projected on a

semitransparent screen behind the participants' head using a

3-micromirror data projector (Christie X3, Christie Digital Systems,

Mönchengladbach, Germany). The distance to the screen was approxi-

mately 34 cm via a mirror located above the eyes of the participant

(binocular field of view 24 cm).

2.7 | fMRI analyses

The fMRI data were analyzed using FSL tools (Smith et al., 2004).

Motion correction was performed using FMRIB's Linear Image Regis-

tration Tool (MCFLIRT). We used the Brain Extraction Tool (BET) for

T1 as well as functional images to isolate the brain tissue from the

non-brain tissue. The linear registration of the functional image via

Pre-screening Pretest Training period PosttestPre-screening

Exclusions
-comorbid diagnoses
-other medications
-MRI constraints
Diagnostic evaluation

Neuropsych. testing
     -working memory
     -attention
     -general abilities
fMRI
     -2 n-back tasks 
     -real-world attention
Screening
Self-ratings

Training group
-Dual -n-back
-30 min, thrice a week
-5 weeks
Active controls
-Bejeweled game
-30 min, thrice a week
-5 weeks

Similar to pretest

timeF IGURE 1 Illustration of the main
aspects at different stages of the study
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the anatomical image to standard space (MNI152 template, Montreal

Neurological Institute) was performed using FMRIB's Linear Image

Registration Tool (FLIRT). The registration of the functional image to

the anatomical image was performed using six rigid body transforma-

tions. In the linear transformation from anatomical to standard image,

we used 12 degrees of freedom. Residual motion was regressed from

the functional data in the modeling stage. We also confirmed that

there were no group differences in mean displacements in any com-

parison (see Table S1) and that there were no clear spikes in the data

included in the analysis. The functional data were high-pass filtered

using a 100-s cutoff. Spatial smoothing was performed separately on

each volume of the data by setting a 4 mm Gaussian kernel to the

signal.

We performed general linear model (GLM) data-analyses using

fMRI Expert Analysis Tool software (FEAT, Woolrich, Ripley, Brady, &

Smith, 2001), Functional Magnetic Resonance Imaging of the Brain

Centre (FMRIB) software library (FSL, release 5.0.9). FMRIB's

Improved Linear Model was used in the first level analysis. Gamma

function was used in the convolution of the hemodynamic response

function. First-level standard GLM included three task regressors (one

each for 1-back, 2-back, and 3-back tasks), and nuisance regressors

for instructions (1) and motion (6). The 0-back task (press a yes/no

button to each stimulus) was used as a baseline in the model. The

resulting first level contrasts were 1-back versus 0-back, 2-back ver-

sus 0-back, and 3-back versus 0-back. This analysis was conducted to

reveal the activations at different load levels. Comparisons to the

0-back task were selected instead of load effects (2-back vs. 1-back,

3-back vs. 2-back, and 3-back vs. 1-back), since the effects of load are

not linear and therefore the training effects as well as the group dif-

ferences would be more difficult to interpret. In addition, we deter-

mined the activations (1 1 1) and deactivations (−1 –1 −1) across the

three load levels. At the first level, the data for visuospatial and digit

single n-back tasks were analyzed separately. The same high-pass fil-

ter was used for the model and time series data.

Second-level analyses examining the group comparisons and

training effects were conducted using FMRIB's Local Analysis of

Mixed Effects (FLAME, Woolrich, Behrens, Beckmann, Jenkinson, &

Smith, 2004). This method was chosen instead of non-parametric per-

mutation inference (Randomize), as permutation testing is neither vali-

dated nor recommended for multiway ANOVAs with three factors

(for discussion on permutation testing with ANOVAs, see Manly &

Francis, 1999, Francis & Manly, 2001). We conducted a second-level

analysis comparing the activations for the visuospatial and digit single

n-back tasks (see Figure S3). However, in further analyses, we com-

bined the two tasks to maximize the statistical power. The first-level

contrasts revealing the activations at different load levels (combining

the data from the visuospatial and digit tasks) were compared across

the ADHD and healthy control groups (1 –1 and −1 1). Activations

and deactivations across all participants (see overlays in Figures 2 and

4) were analyzed across all participants to interpret the group differ-

ences and training effects. To determine the training effects in the

ADHD group, we conducted a mixed ANOVA with factors Session

(pretest, posttest), Group (Experimental group, Active control group)

and Task (visuospatial task, digit task), with a particular interest on the

Group × Session interaction. We also compared trained the partici-

pants with ADHD (both groups separately) and the untrained healthy

controls to determine whether the aberrant brain activity is recovered

during the training (similar to Stevens et al., 2016). To interpret the

training effects and possible recovery of aberrant activity, we sepa-

rately plotted the mean amplitudes in regions of interest (10 mm

radius) based on the voxels showing peak activations (see Figure S4).

In the whole brain analyses, cluster-based thresholding was used to

account for multiple comparisons. The reliability of FLAME was con-

firmed by Eklund, Nichols, and Knutsson (2016). To make sure that

our analyses do not contain false positives, we used relatively high

threshold values (Z > 3.5, p < .05).

3 | RESULTS

3.1 | Behavioral performance at baseline (ADHD
participants vs. healthy controls)

Task performance comparing participants with ADHD and healthy

controls at baseline are reported in Table 1. The only significant group

differences were observed in the CPT and digit span WM task in

which the participants with ADHD performed worse than the healthy

controls. In the visuospatial and number single n-back tasks performed

during the fMRI session, both groups showed the canonical load

effect (see Table S2). The visuospatial and number tasks did not differ

significantly in difficulty (Main effect of Condition: (F[1,40] = 0.02,

p = .97, ηp
2 = 0.00).

3.2 | Brain activity in the n-back tasks at baseline
(ADHD vs. healthy controls)

The analysis across all participants and task loads showed expected

activations in FPN, SN, inferior temporal/lateral occipital cortex, and

several subcortical areas, including the cerebellum and striatum. The

opposite contrast revealed deactivations in DMN areas in the

PCC/precuneus, VMPFC, SMN, and inferior temporal, and lateral

occipital/occipito-parietal cortices (Figure 2a). Brain activity was

largely similar between the visuospatial and digit n-back tasks,

mirroring the behavioral data. The only significant stimulus-type

effects across all participants were observed in the dorsal visual,

mainly in the lateral occipital cortex (Figure S3), bilaterally. Due to the

large overlap between the two single n-back tasks, we collapsed the

data across both task variants for the subsequent analyses to increase

power.

In the 1-back versus 0-back tasks, group differences (healthy con-

trol > ADHD) were observed in the bilateral IFG, left posterior cere-

bellum, and right medial temporal gyrus (Figure 2a, Table 2). In the

2-back versus 0-back tasks, there were additional group differences in

the activity of the right inferior parietal cortex, precuneus/PCC, right

posterior cerebellum, and left anterior cerebellum (Figure 2a, Table 2).
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In addition to areas showing group differences in the 2-back versus

0-back tasks (excluding right IFG that showed group difference only in

the 1-back vs. 0-back contrast), the 3-back versus 0-back tasks also

revealed group differences in the VMPFC, right SMN, SMA/ACC, the

bilateral visual cortices, and several subcortical areas (Figure 2a,

Table 2).

F IGURE 2 (a) Group differences
(healthy controls vs. participants with
ADHD) in brain activity in untrained
participants during the n-back tasks at
each load level (1-back vs. 0-back, 2-back
vs. 0-back, and 3-back vs. 0-back). There
was no significant brain activity in the
opposite contrasts (participants with
ADHD vs. healthy controls). (b) Brain

activity of the participants with ADHD in
the Experimental group at posttest as
compared with the untrained healthy
controls. Red and blue colored edges in
each brain rendering shows the borders
of the activations and deactivations
across all participants and load levels.
(c) Training effects in the Experimental
group and healthy controls in DMN hubs.
Z = 3.5, corrected p < .05

SALMI ET AL. 4883



3.3 | The effects of training on task performance
in adults with ADHD

Experimental group and Active controls did not differ with regard to

their demographics or attention symptoms at pretest (Table S3).

Across the training period, participants' self-reported motivation in

the Experimental group was 7 on average (SD = 1.8) and their arousal

level was at 5.8 (1.8) (see Figure S2). At training start, participants

were relatively optimistic by indicating that the training might have

benefits with regard to their ADHD symptoms (mean score = 8.0 [1.0]

on a scale from 1 to 10, with 10 corresponding to highly confident).

The Active controls reported an average motivation level of 6.3

(SD = 2.2) and an arousal level of 6.4 (SD = 2.0) (cf. Figure S2). Presum-

ably due to the high attentional demands, even the control group

expected some training benefits with regard to their ADHD symptoms

at the beginning of training (mean score = 6.6; SD = 2.5). There were

no differences between the Experimental and Active control groups in

reported motivation (t = 0.91, p = .37) or arousal levels (t = 0.91,

p = .37), and furthermore, there were no significant group differences

in expected training benefits between the two groups

(t = 1.91, p = .07).

The participants with ADHD assigned to the Experimental group

significantly improved their performance in the dual n-back task as a

function of training (Figures 3 and 4, Table S4). Although the partici-

pants with ADHD assigned to the Active control group showed

improved performance in the dual n-back task at posttest as well,

the improvement was more pronounced in the Experimental group

(Group × Session interaction (F[1,38] = 28.3, p < .0001, ηp
2 = 0.45).

In contrast, in the single n-back tasks performed in the fMRI scanner,

there were no significant pre- versus posttest changes within either

group, nor were the Group × Session interactions significant

(Table S4).

The Experimental group also improved more than the Active con-

trol group in the visuospatial version of the running memory task

(Group × Session interaction (F[1,38] = 6.9, p < .05, ηp
2 = 0.17), but

not in the digit version (Figure 4, Table S4). In the digit span task, only

the Experimental group improved their performance from the pretest

to posttest, but the Group × Session interaction was not significant

(Figure 4, Table S4). In CPT, both groups made fewer Commission

errors at posttest, and in addition, the Active controls made fewer

Omission errors (Figure 4, Table S4). However, none of the Group ×

Session interactions were significant.

The symptom scores in ASRS-B and the total ASRS scores numer-

ically decreased in the Experimental group at posttest (Table S4).

However, neither of these effects nor the Group × Session interac-

tions were significant. In the ASRS-A scores, there were no changes

within or across the two groups. Nonetheless, in order to further

explore any training-related changes on symptoms, we conducted a

TABLE 2 Labels of brain areas
activated in the single n-back tasks in
healthy controls versus ADHD
participants at baseline

Voxels Z-score x y z

2-back versus 0-back

Right middle temporal gyrus 294 5.35 58 −14 −18

Right posterior cerebellum 280 6.78 24 −82 −26

Right precuneus 211 5.36 12 −60 38

3-back versus 0-back

Right posterior cerebellum 451 6.03 26 −82 −28

Left precuneus cortex 407 6.04 −12 −56 32

Right middle temporal gyrus 326 4.91 52 −28 −16

Left posterior cerebellum 325 4.89 −28 −76 −44

Right medial frontal gyrus 166 4.9 12 54 −8

Right parahippocampal cortex 126 4.79 16 −32 −6

Right inferior frontal gyrus 117 4.88 −50 30 −2

Right anterior cingulate gyrus 109 4.28 6 4 42

Right parahippocampal gyrus 109 4.86 20 −6 −26

Vermis 104 4.86 2 −56 −34

Note: For each area, we report numbers of voxels, Z-scores, and maximum coordinates for each activation

cluster above 100 voxels.

F IGURE 3 Maximum n-level in the dual n-back task in each
training session (1–15) for each participant with ADHD in the
Experimental group
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median-split within the Experimental group separating high and low

gainers according to their dual n-back improvement from pretest to

posttest. This analysis revealed that participants in the Experimental

group who improved less showed a significant decrease in their

ASRS-A (Group × Session F[1,20] = 5.8, p < .05, ηp
2 = 0.26), ASRS-B

(Group × Session F[1,20] = 7.3, p < .05, ηp
2 = 0.30), and in ASRS-total

scores (Group × Session F[1,20] = 7.7, p < .05, ηp
2 = 0.31) relative to

Active controls.

3.4 | The effects of training on WM-related brain
activity in adults with ADHD

When the changes in the Active control group were accounted for

(Group × Session interaction, Figure 5, Table 3), we observed training-

related brain activation changes only in the analysis that was per-

formed across each n-back load level. This analysis revealed Group ×

Session interactions in widespread areas covering the DLPFC, supe-

rior and inferior parietal cortex, precuneus, and SMA/ACC. Plotting

the data separately between spatial and digit tasks suggested differ-

ent patterns for trained task and untrained task (Figure 5). More spe-

cifically, in the trained task, the activity in the Experimental group was

typically decreased, while in the untrained task the activity was

increased. Hence, there were two distinct patterns of training effects

that contributed to the Group × Session interaction.

As compared with the healthy controls at baseline, the brain

activity in the Experimental group at post-test differed in the 1-back

versus 0-back task mainly in right DLPFC, IFG, and MTG, and in the

left posterior cerebellum (Figure 2b). In the 2-back versus 0-back task,

differences between the Experimental group at post-test and healthy

controls at baseline were observed in right IFG, PPC, bilateral MTG,

left anterior and posterior cerebellum, and right posterior cerebellum.

After training, Experimental group differed from healthy controls only

in the bilateral MTG and left posterior cerebellum. Thus, the group dif-

ferences in DMN (precuneus/cuneus and VMPFC) observed prior to

the training period were no longer present after the training period,

especially in the demanding 3-back versus 0-back condition. However,

plotting the data in areas showing peak activations (see Figure S4)

suggested similar pre-post effects in the Experimental group and

Active control group (Figure 2c).

F IGURE 5 Training-related modulations (Group [Experimental group, Active control group] × Session [pretest, posttest] interaction) of brain
activity in the n-back tasks in participants with ADHD. Z = 3.5, corrected p < .05. We separately plotted the effects in each individual condition in
key regions of interest to clarify the interpretation of the results

F IGURE 4 Training effects in the Experimental group and Active
control group. G × S refers to Group × Session interaction
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4 | DISCUSSION

We conducted the first randomized controlled trial to reveal how the

brain functions in adult ADHD might respond to a targeted WM inter-

vention. We first compared brain activity during n-back WM tasks

between untrained participants with ADHD versus healthy controls to

examine the aberrant brain activity. Then we randomly assigned the

participants with ADHD to one of two interventions: an Experimental

group who trained thrice a week on a dual n-back task, and an Active

control group who trained on an object matching game (Bejeweled 2)

with lower WM demands.

4.1 | Baseline differences between ADHD versus
healthy controls

4.1.1 | Cognitive functions

As expected, as compared with healthy controls, participants with

ADHD exhibited a range of deficits, ranging from self-rated clinical

symptoms in inattention and impulsivity to related behavioral perfor-

mance as indicated by CPT and digit span at baseline (Table 1). Those

effects are consistent with previous ADHD studies (see Corkum &

Siegel, 1993; Martinussen et al., 2005). Also consistent with other

work is our observation that adults with ADHD performed relatively

well on n-back tasks, showing similar behavioral performance levels as

the healthy controls (e.g., Massat et al., 2012; Valera et al., 2005).

4.1.2 | WM-related brain functioning

Consistent with our hypotheses, as compared to healthy controls, our

ADHD participants displayed aberrant WM-related brain functioning at

baseline. These group differences were observed as decreased brain

activity in the ADHD group in the DMN, SN, FPN, as well in the occipital

and temporal cortex, and cerebellum, relative to healthy controls

(Figure 2a, Table 2). These brain areas have been frequently implicated in

prior n-back studies using participants with ADHD (Bayerl et al., 2010;

Brown et al., 2012; Cubillo et al., 2014; Kobel et al., 2009; Mattfeld

et al., 2015; Valera et al., 2010). Those effects seem to be consistent

despite the often observed lack of group differences in task performance

(Massat et al., 2012, Valera et al., 2005), using other WM tasks (Cortese

et al., 2012), or even at resting state (Castellanos & Proal, 2012). Our

study adds to that literature in that our group differences in brain activity

were observed despite comparable behavioral performance, and thus,

the effects cannot be explained by the task being more difficult for the

ADHD participants (Salmi et al., 2018). Importantly, group differences

were reflected in more distributed brain networks in conditions with

higher WM demands, which is consistent with prior studies.

4.2 | Training study

4.2.1 | Behavioral findings

In our randomized intervention within the participants with ADHD,

we observed behavioral effects that are broadly in line with previous

WM training studies in ADHD (Cortese et al., 2015) and healthy con-

trols (see Melby-Lervag et al., 2016; Soveri et al., 2017b). Specifically,

the ADHD group that practiced WM with a dual n-back task improved

not only in the trained tasks (Figure 3), but also in some other closely

related WM measures, namely in digit span and visuospatial running

memory tasks (Table S4). Both groups improved in an untrained atten-

tion task (CPT), which distinguished ADHD participants from the

healthy controls at pretest (Table S4), indicating that either both inter-

ventions required attentional processes, and/or that the findings

reflected test–retest effects. However, given that CPT performance is

generally stable and test–retest effects are rarely observed (Halperin

et al., 1991), these improvements might still be of clinical value, espe-

cially since the participants with ADHD did no longer differ from the

healthy controls at post-test (see commission errors at Table S4). The

limited effects of WM training on ADHD symptoms in adults are also

in line with previous work (Dentz, Guay, Parent, & Romo, 2017). Curi-

ously, self-reported ADHD symptoms decreased relative to the Active

control group only in those participants who improved the least in the

trained task. This result could stem from constantly higher attentional

TABLE 3 Labels of brain areas
showing training effects in ADHD
participants (group × session interaction)
across all load levels, and numbers of
voxels, Z-scores, and maximum
coordinates for each activation cluster
above 100 voxels

Voxels Z-score x y z

Left frontal pole 1,190 6.26 −28 62 4

Left middle frontal gyrus 378 5.59 −30 −6 56

Right precentral gyrus 334 5.21 36 −62 34

Right frontal pole 273 5.38 30 60 12

Right middle temporal gyrus 265 5.19 34 2 48

Right superior frontal gyrus 227 4.92 22 0 62

Right inferior frontal gyrus 167 5.31 38 32 14

Left precuneus 127 4.75 −8 −74 34

Right paracingulate gyrus 120 4.87 10 38 26

Left supramarginal gyrus 112 5.01 −48 −50 44

Left lateral occipital gyrus 101 5.8 −22 −72 42
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effort for those participants that do not manage to develop new strat-

egies (see Fellman et al., 2020). It should be noted that this effect is

rather opposite to the “rich get richer” effect that is frequently

reported in cognitive training (Guye, De Simoni, & von Bastian, 2017;

Karbach, Könen, & Spengler, 2017; Lövdén, Brehmer, Li, &

Lindenberger, 2012), but there is also prior evidence for the compen-

sation hypothesis (that those who initially have problems would bene-

fit more is weaker) that we observed here (Lövdén et al., 2012).

4.2.2 | Training-related modulation of WM
networks in ADHD

Our findings concur with and extend previous work with adolescent

ADHD (Stevens et al., 2016) in important ways. Specifically, here we

show that WM training effects on brain networks are observed in

adults with ADHD when compared to active controls, and further-

more, using an intervention task (n-back) that has been widely used in

cognitive training studies (Pergher et al., 2020). Thus, our findings are

in line the suggestion that functional WM components are shared

across specific task types (Daniel et al., 2016; Emch et al., 2019;

Rottschy et al., 2012; Wager & Smith, 2003). In contrast, a recent pilot

study conducted in children with ADHD did not find any training-

related modulations in the cerebral cortex (de Oliveira Rosa

et al., 2019), which could be related to the different age groups and/or

their small sample size.

As expected, Intervention (Experimental group vs. Active control

group) × Session (Pre vs. Post) interactions were almost exclusively

observed in the areas that were already activated at baseline (see Fig-

ures 2a,b). Specifically, training-related modulations of brain activity

were observed in widespread brain networks, encompassing several

PFC areas covering dorso- and ventrolateral areas and extending to the

medial areas (SMA), as well as bilateral PPC. The present results con-

cerning the PFC are consistent with a recent meta-analysis demonstrat-

ing that modulation of this region differentiates WM training studies

from training studies targeting perceptual-motor functions (Salmi

et al., 2018a). Although training-related modulations of PPC activity

appear not to be as consistently reported in healthy controls than train-

ing effects in the PFC (Salmi et al., 2018a), the involvement of the PPC

has been suggested in various studies since Olesen et al. (2004), see

Constantinidis and Klingberg (2016) for a review). Also, the effects of

WM training on PFC activity were perhaps more widespread in the pre-

sent study than in many other studies. However, all PFC areas showing

training-related modulations in the present study have been reported

also in prior human brain imaging studies on WM training. Hence, the

widespread effects are probably rather explained by the magnitude of

the effect rather than less focal pattern as such (Constantinidis &

Klingberg, 2016; Salmi et al., 2018a). There is also evidence of training-

related modulations of functional (Astle, Barnes, Baker, Colclough, &

Woolrich, 2015; Jolles, van Buchem, Crone, & Rombouts, 2013;

Takeuchi et al., 2013) and anatomical (de Lange et al., 2017; Salminen,

Mårtensson, Schubert, & Kühn, 2016; Takeuchi et al., 2010) connectiv-

ity in these networks, as well as changes in related neurotransmitter

system activity (Bäckman & Nyberg, 2013). With regard to PFC, there is

even evidence of training-related changes in PFC neuronal population

coding in non-human primates (Meyers, Qi, & Constantinidis, 2012).

Hence, also with regard to ADHD, a variety of brain imaging techniques

could be utilized to characterize the training-related plasticity with even

greater detail.

Brain areas where training effects have been repeatedly demon-

strated in prior studies but were not observed in the present study

mostly limit to subcortical areas such as the striatum (Bäckman &

Nyberg, 2013). There could be several reasons why modulations of the

striatum activity were not observed here. Firstly, like in other subcorti-

cal areas, striatal response amplitude changes are generally smaller than

those in the cerebral cortex. It is possible that our experimental design

was simply not sensitive enough to detect such effects. Secondly, it

could be that some other metric than amplitude change would be bet-

ter suited to detect training effects in the striatum. For instance, func-

tional connectivity or response variability might be theoretically

motivated here, because of the role of the striatum in modulating activ-

ity in the cerebral cortex. Thirdly, the registration was here conducted

at the whole brain level, with methods that are not optimized to accu-

rately align subcortical areas. Therefore, it could be that the possible

training effects in the striatum may have been blurred by modest regis-

tration errors at the group level analysis. Finally, it could simply be that

striatal signals are not modulated by training in ADHD participants simi-

larly to healthy participants. Due to the important role of the striatum

in ADHD (see Castellanos & Proal, 2012), it would be important to

examine this issue further in separate studies targeted to detect modu-

lations of striatal activity.

As expected, in the present study, training effects were observed

both as increases and decreases in brain activity (Chein &

Schneider, 2005; Salmi et al., 2018). The present study included for the

first time both a criterion task and a structurally similar near-transfer task,

showing differential training effects in these two conditions. More specifi-

cally, we observed widespread training-related brain activity decreases

during the trained task, and activity increases during the structurally simi-

lar task variant. Our finding is consistent with the skill-learning approach

that emphasizes task-specific learning (Chein & Schneider, 2012). Based

on this approach, the differences between the training-related changes in

the trained task and untrained task could be well explained by the differ-

ent processes involved at different stages of learning. More specifically, in

the trained tasks, gradual automatization is likely to have taken placewhile

in untrained tasks, the training could evoke enhanced attentional engage-

ment that is considered to happen at earlier stages of learning (Chein &

Schneider, 2012, see also Kuhn et al., 2013). The lack of automatization in

the untrained task could also explain why the training effects are often

quite short lasting (seeMelby-Lervåg&Hulme, 2013).

4.2.3 | Restoration of the aberrant activity
in ADHD

Our results revealed that compared to healthy controls, several brain

areas indicating aberrant activity in participants with ADHD at

SALMI ET AL. 4887



baseline showed training-related restoration after the intervention.

Specifically, at post-test, brain activity patterns in participants with

ADHD were no longer different from healthy controls in the bilateral

DLPFC, SMA, FEF, and PPC. We interpret those effects as modula-

tions of WM-related activity as a result of training, in line with the

redistribution hypothesis. Previous ADHD studies have not been able

to demonstrate such effects given the lack of healthy controls needed

to determine the aberrant activity at baseline, and the lack of employ-

ment of active controls. Yet, there is some evidence of restoration of

brain function beyond task-related effects in schizophrenia research

(Li et al., 2015), and thus, our results are consistent with those earlier

findings, reflecting responsivity of brain areas implicated in ADHD to

targeted training.

Activity in the DMN hubs (precuneus/PCC, MPFC, and angular

gyrus) that distinguished participants with ADHD from the healthy

controls at baseline (Figure 2a), indicated similar restoration effects at

post-test. However, as illustrated in Figure 2c, these effects were not

restricted to the Experimental training group, but they were also

observed in the Active control group. It has been demonstrated that

the functioning of these areas is modulated by mindfulness interven-

tion (Bachmann et al., 2018), and there is also some evidence that

stimulant treatments affect recovery of DMN functions (Cubillo

et al., 2014). Thus, the present findings suggest that extended training

with an attention-demanding task might influence DMN in ADHD

participants, but such effects may not be specifically related to

WM. The DMN restoration effects seem to be restricted to anterior

areas given that neither the dorsal medial DMN (medial/inferior tem-

poral cortex) nor the posterior cerebellum showed any restoration

effects after training. It should be noted that monitoring of the activa-

tion changes during the training period would be useful to confirm

that these effects are not simply test–retest effects.

Evidence for the restoration of aberrant brain functions could

have important clinical applications. For example, brain imaging

might not only improve our understanding about the malleability of

brain functions, but they could also lead to new targets for interven-

tions. For example, brain imaging could, for instance, reveal “bub-

bling under” effects (changes in the brain that are not yet readily

observed in behavior) that could be further examined in behavioral

studies. It might also be that the behavioral outcome measures tap-

ping other cognitive functions (Jaeggi & Buschkuehl, 2014) or every-

day problems (Cortese et al., 2015) do not always capture the

relevant effects. Overall, more work is needed to better understand

the potential implications of WM training, especially by using both

trained and non-trained versions of the tasks as outcome measures

in order to shed more light on potential differential effects on brain

activity.

5 | LIMITATIONS

One of the key limitations in contemporary cognitive training research

is that the transfer effects are often limited (Melby-Lervag

et al., 2016; Soveri et al., 2017a). Although we did observe some

effects that generalized beyond the trained tasks, the effects were

also modest in our study. Similarly, the neuroimaging effects observed

in the present study are not that strong, which might be related to the

lack of behavioral effects. It is well known that there are considerable

individual differences in training and transfer outcomes (Jaeggi,

Buschkuehl, Shah, & Jonides, 2013) and this might be an issue espe-

cially in relatively small sample sizes typically gathered in brain imag-

ing studies. The trade-off in selecting a paradigm that involves a

multitude of WM component functions is that the training results

should not be interpreted too narrowly in terms of a specialized

subfunction. The present group comparisons at pretest and posttest

could well be affected by the individual differences in task demands,

arousal, and motivation, which we were not able to test in this sample.

It is also possible that training improvement was somewhat affected

by part of the training being conducted at home. This could cause

individual variability that may diminish some of the effects at group-

level. We observed robust training effects on brain activation in single

n-back tasks only when the analysis was performed across the three

load levels. Even though it is not possible to use the generally rec-

ommended permutation-based thresholding in this type of ANOVA

design, however, this training effect was robust across the three load

levels of the n-back task even with a highly stringent thresholding.

Combining multiple load levels in the analysis may, however, limit the

interpretation of the findings. For instance, the non-focal nature of

the training effects could relate to less demanding tasks being

included to the analysis, even though it has been suggested that WM

training does involve also many other brain areas besides DLPFC

(Salmi et al., 2018a). In future studies, separating the load effect from

the general training effect might be possible by increasing the amount

of data collected per each load level or by decreasing the number of

difficulty levels. Finally, using unwarping based on field maps, we

could have possibly obtained slightly better registration of individual

functional brain maps to the standard space, especially at the VMPFC

and inferior temporal areas, which might have resulted in some activa-

tions that we were not able to reveal with the current analysis.

6 | CONCLUSIONS

The present study provides the first evidence that ADHD brain func-

tions are still responsive to WM training at adulthood. We also cor-

roborate the preliminary results on adolescents with ADHD reported

by Stevens et al. (2016), suggesting that brain functions in ADHD can

be modulated by extensive cognitive training. Practicing WM with a

dual n-back task resulted in modulations of task-positive FPN activity,

specifically, WM training resulted in a redistribution of WM-related

activity which was most prominent in the PFC. We also found evi-

dence that WM training restoring some of the aberrant activity, and

that neural mechanisms were different in trained and transfer tasks.

Importantly, training-related changes in brain activity were different in

the trained and untrained tasks, activity being decreased in the trained

task at posttest while in the untrained task an activity increase was

observed. This finding might inform future developments of WM
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training paradigms for ADHD interventions by demonstrating that the

near-transfer may stem from increased brain activity, but it could also

make it less durable than task-specific effects that probably involves

automatization. However, given the modest behavioral transfer

effects observed here, the present neuroimaging results have at pre-

sent mostly theoretical value.

ACKNOWLEDGMENTS

The study was supported by the Academy of Finland (grants

#260276 and #323251 to Matti Laine, grants #260054 and

#297848 to Kimmo Alho, and grants #325981 and #328954 to

Juha Salmi) and the Åbo Akademi University Endowment for the

BrainTrain project. Authors are grateful to five research assistants

(Katri Mikkola, Elina Nakane, Iikka Yli-Kyyny, Tuija Tolonen, and

Nora Moberg) that participated to data collection, and to a radiog-

rapher (Marita Kattelus) for helping with MRI measurements. We

also want to thank the anonymus reviewers of this article

(Reviewer 2 in particular) for the constructive and exceptionally

detailed comments.

CONFLICT OF INTEREST

None of the authors have any biomedical financial interests or poten-

tial conflicts of interest.

AUTHOR CONTRIBUTIONS

Juha Salmi: Experiment design; collection and analysis of the data;

manuscript writing and its revision that was commented, complemen-

ted, or agreed on by all authors. Matti Laine: Experiment design; com-

mented the data-analyses; selection, recruitment, and diagnosis of the

patients. Anna Soveri: Experiment design; commented the data-ana-

lyses. Kimmo Alho: Experiment design; commented the data-analyses.

Viljami Salmela: Experiment design; commented the data-analyses.

Susanne M. Jaeggi: Experiment design; commented the data-analyses.

Pekka Tani: Experiment design; selection, recruitment, and diagnosis

of the patients. Sami Leppämäki: Experiment design; selection,

recruitment, and diagnosis of the patients. Anniina Koski: Selection,

recruitment, and diagnosis of the patients.

DATA AVAILABILITY STATEMENT

We used codes implemented in FSL toolbox. All parameters and

details will be available from the authors upon request. As the data

will be used also in other papers, publishing parts of it in a public

repository will be considered only when the relevant publications

have been accepted for publication.

ORCID

Juha Salmi https://orcid.org/0000-0001-5623-6598

REFERENCES

Alderson, R. M., Kasper, L. J., Hudec, K. L., & Patros, C. H. (2013).

Attention-deficit/hyperactivity disorder (ADHD) and working

memory in adults: A meta-analytic review. Neuropsychology, 27,

287–302.

Astle, D. E., Barnes, J. J., Baker, K., Colclough, G. L., & Woolrich, M. W.

(2015). Cognitive training enhances intrinsic brain connectivity in

childhood. The Journal of Neuroscience, 22, 6277–6283.
Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M.

(2015). Improving fluid intelligence with training on working memory:

A meta-analysis. Psychonomic Bulletin & Review, 22, 366–377.
Bachmann, K., Lam, A. P., Sörös, P., Kanat, M., Hoxhaj, E., Matthies, S., …

Philipsen, A. (2018). Effects of mindfulness and psychoeducation on

working memory in adult ADHD: A randomised, controlled fMRI

study. Behaviour Research and Therapy, 106, 47–56.
Bäckman, L., & Nyberg, L. (2013). Dopamine and training-related working-

memory improvement. Neuroscience and Biobehavioral Reviews, 37,

2209–2219.
Banaschewski, T., Roessner, V., Dittmann, R. W., Janardhanan

Santosh, P., & Rothenberger, A. (2004). Non–stimulant medications in

thetreatment of ADHD. European Child & Adolescent Psychiatry, 13,

i102–i116.
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and execu-

tive functions, constructing a unifying theory of ADHD. Psychological

Bulletin, 121, 65–94.
Bayerl, M., Dielentheis, T. F., Vucurevic, G., Gesierich, T., Vogel, F.,

Fehr, C., … Konrad, A. (2010). Disturbed brain activation during a

working memory task in drug-naive adult patients with ADHD. Neu-

roreport, 21, 442–446.
Bhandari, A., & Badre, D. (2018). Learning and transfer of working memory

gating policies. Cognition, 172, 89–100.
Biehl, S. C., Merz, C. J., Dresler, T., Heupel, J., Reichert, S., Jacob, C. P., …

Herrmann, M. J. (2016). Increase or decrease of fMRI activity in adult

attention deficit/hyperactivity disorder: Does it depend on task diffi-

culty? The International Journal of Neuropsychopharmacology, 6(19), 10.

Blankenship, A. B. (1938). Memory span: A review of the literature. Psy-

chological Bulletin, 35, 1–25.
Bledowski, C., Kaiser, J., & Rahm, B. (2010). Basic operations in working

memory: Contributions from functional imaging studies. Behavioural

Brain Research, 214, 172–179.
Boonstra, A. M., Oosterlaan, J., Sergeant, J. A., & Buitelaar, J. K. (2005).

Executive functioning in adult ADHD: A meta-analytic review. Psycho-

logical Medicine, 35, 1097–1108.
Bozhilova, N. S., Michelini, G., Kuntsi, J., & Asherson, P. (2018). Mind wan-

dering perspective on attention-deficit/hyperactivity disorder. Neuro-

science and Biobehavioral Reviews, 92, 464–476.
Brown, A., Biederman, J., Valera, E., Lomedico, A., Aleardi, M.,

Makris, N., & Seidman, L. J. (2012). Working memory network alter-

ations and associated symptoms in adults with ADHD and bipolar dis-

order. Journal of Psychiatric Research, 46, 476–483.
Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD:

Beyond the prefrontal-striatal model. Trends in Cognitive Sciences, 16,

17–26.
Constantinidis, C., & Klingberg, T. (2016). The neuroscience of working

memory capacity and training. Nature Reviews. Neuroscience, 17,

438–449.
Chein, J. M., & Schneider, W. (2005). Neuroimaging studies of practice-

related change: fMRI and meta-analytic evidence of a domain-

general control network for learning. Cognitive Brain Research, 25,

607–623.
Chein, J. M., & Schneider, W. (2012). The brain's learning and control

architecture. Current Directions in Psychological Science, 21, 78–84.
Collins, K. P., & Cleary, S. D. (2016). Racial and ethnic disparities in

parent-reported diagnosis of ADHD: National Survey of Children's

health (2003, 2007, and 2011). The Journal of Clinical Psychiatry, 77,

52–59.
Corkum, P. V., & Siegel, L. S. (1993). Is the continuous performance task a

valuable research tool for use with children with attention-deficit-

hyperactivity disorder? Journal of Child Psychology and Psychiatry, 34,

1217–1239.

SALMI ET AL. 4889

https://orcid.org/0000-0001-5623-6598
https://orcid.org/0000-0001-5623-6598


Cortese, S., Ferrin, M., Brandeis, D., Buitelaar, J., Daley, D.,

Dittmann, R. W., … European ADHD Guidelines Group (EAGG).

(2015). Cognitive training for attention-deficit/hyperactivity disorder:

Meta-analysis of clinical and neuropsychological outcomes from ran-

domized controlled trials. Journal of the American Academy of Child and

Adolescent Psychiatry, 54, 164–174.
Cortese, S., Kelly, C., Chabernaud, C., Proal, E., Di Martino, A., Milham, M. P.,

Castellanos, F. X. (2012). Toward systems neuroscience of ADHD: A

meta-analysis of 55 fMRI studies. The American Journal of Psychiatry,

169, 1038–1055.
Cubillo, A., Smith, A. B., Barrett, N., Giampietro, V., Brammer, M.,

Simmons, A., & Rubia, K. (2014). Drug-specific laterality effects on

frontal lobe activation of atomoxetine and methylphenidate in atten-

tion deficit hyperactivity disorder boys during working memory. Psy-

chological Medicine, 44, 633–646.
Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008).

Transfer of learning after updating training mediated by the striatum.

Science, 320, 1510–1512.
Daniel, T. A., Katz, J. S., & Robinson, J. L. (2016). Delayed match-to-sample

in working memory: A BrainMap meta-analysis. Biological Psychology,

120, 10–20.
Dentz, A., Guay, M. C., Parent, V., & Romo, L. (2017). Working memory

training for adults with ADHD. Journal of Attention Disorders, 24,

918–927.
D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of work-

ing memory. Annual Review of Psychology, 66, 115–142.
Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI

inferences for spatial extent have inflated false-positive rates. Proceed-

ings of the National Academy of Sciences of the United States of America,

113, 7900–7905.
Emch, M., von Bastian, C. C., & Koch, K. (2019). Neural correlates of verbal

working memory: An fMRI meta-analysis. Frontiers in Human Neurosci-

ence, 12(13), 180.

Epstein, J., Johnson, D. E., & Conners, K. C. (2001). Conners' adult ADHD

diagnostic interview for DSM-IV (CAADID) part II: Diagnostic criteria.

North Tonawand, NY: Multi-Health Systems Inc.

Eriksson, J., Vogel, E. K., Lansner, A., Bergstrom, F., & Nyberg, L. (2015).

Neurocognitive architecture of working memory. Neuron, 88, 33–46.
Fellman, D., Jylkkä, J., Waris, O., Soveri, A., Ritakallio, L., Haga, S., …

Laine, M. (2020). The role of strategy use in working memory training

outcomes. Journal of Memory and Language, 30, 673–708.
Francis, R. I. C., & Manly, B. F. J. (2001). Bootstrap calibration to improve

the reliability of tests to compare sample means and variances.

Environmetrics, 12, 713–729.
Guye, S., De Simoni, C., & von Bastian, C. C. (2017). Do individual differ-

ences predict change in cognitive training performance? A latent

growth curve modeling approach. J Cogn Enhanc, 1, 374–393.
Halperin, J. M., Sharma, V., Greenblatt, E., & Schwartz, S. T. (1991). Assess-

ment of the continuous performance test: Reliability and validity in a

nonreferred sample. Psychological Assessment: A Journal of Consulting

and Clinical Psychology, 3, 603–608.

Jacola, L. M., Willard, V. W., Ashford, J. M., Ogg, R. J., Scoggins, M. A.,

Jones, M. M., … Conklin, H. M. (2014). Clinical utility of the N-back

task in functional neuroimaging studies of working memory. Journal of

Clinical and Experimental Neuropsychology, 36, 875–886.
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving

fluid intelligence with training on working memory. Proceedings of the

National Academy of Sciences of the United States of America, 105,

6829–6833.
Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2013). The role of

individual differences in cognitive training and transfer. Memory & Cog-

nition, 42, 464–480.
Jaeggi, S. M., & Buschkuehl, M. (2014). Working memory training and

transfer: Theoretical and practical considerations. In T. Bourama

(Ed.), new frontiers of multidisciplinary research in steam-h (science,

technology, engineering, agriculture, mathematics, and health) (Vol.

90, pp. 19–43). Cham, Switzerland: Springer Proceedings in Mathe-

matics & Statistics.

Jones, M. R., Katz, B., Buschkuehl, M., Jaeggi, S. M., & Shah, P. (2018).

Exploring n-back cognitive training for children with ADHD. Journal of

Attention Disorders, 24, 704–719.
Jolles, D. D., van Buchem, M. A., Crone, E. A., & Rombouts, S. A. (2013).

Functional brain connectivity at rest changes after working memory

training. Human Brain Mapping, 34, 396–406.
Kane, M. J., Conway, A. R., Miura, T. K., & Colflesh, G. J. (2007). Working

memory, attention control, and the N-back task: A question of con-

struct validity. Journal of Experimental Psychology. Learning, Memory,

and Cognition, 33, 15–622.
Karbach, J., Könen, T., & Spengler, M. (2017). Who benefits the most? Indi-

vidual differences in the transfer of executive control training across

the lifespan. Journal of Cognitive Enhancement, 1, 394–405.
Kirchner, W. K. (1958). Age differences in short-term retention of rapidly

changing information. Journal of Experimental Psychology, 55,

352–358.
Klingberg, T. (2008). The overflowing brain: Information overload and the

limits of working memory. New York, NY: Oxford University Press.

Klingberg, T. (2010). Training and plasticity of working memory. Trends in

Cognitive Sciences, 14, 317–324.
Kobel, M., Bechtel, N., Weber, P., Specht, K., Klarhöfer, M., Scheffler, K., …

Penner, I. K. (2009). Effects of methylphenidate on working memory

functioning in children with attention deficit/hyperactivity disorder.

European Journal of Paediatric Neurology, 13, 516–523.
Kuhn, S., Schmiedek, F., Noack, H., Wenger, E., Bodammer, N. C.,

Lindenberger, U., & Lovden, M. (2013). The dynamics of change in

striatal activity following updating training. Human Brain Mapping, 34,

1530–1541.
de Lange, A. G., Bråthen, A. C. S., Rohani, D. A., Grydeland, H.,

Fjell, A. M., & Walhovd, K. B. (2017). The effects of memory training

on behavioral and microstructural plasticity in young and older adults.

Human Brain Mapping, 38, 5666–5680.
Li, X., Xiao, Y. H., Zhao, Q., Leung, A. W., Cheung, E. F., & Chan, R. C.

(2015). The neuroplastic effect of working memory training in healthy

volunteers and patients with schizophrenia: Implications for cognitive

rehabilitation. Neuropsychology, 75, 149–162.
Lövdén, M., Brehmer, Y., Li, S.-C., & Lindenberger, U. (2012). Training-

induced compensation versus magnification of individual differ-

ences in memory performance. Frontiers in Human Neuroscience,

6, 141.

Manly, B. F. J., & Francis, C. (1999). Analysis of variance by randomization

when variances are unequal. Australian & New Zealand Journal of Statis-

tics, 41, 41129.

Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A

meta-analysis of working memory impairments in children with

attention-deficit/hyperactivity disorder. Journal of the American Acad-

emy of Child and Adolescent Psychiatry, 44, 377–384.
Massat, I., Slama, H., Kavec, M., Linotte, S., Mary, A., Baleriaux, D., …

Peigneux, P. (2012). Working memory-related functional brain pat-

terns in never medicated children with ADHD. PLoS One, 7, e49392.

Mattfeld, A. T., Whitfield-Gabrieli, S., Biederman, J., Spencer, T., Brown, A.,

Fried, R., & Gabrieli, J. D. (2015). Dissociation of working memory

impairments and attention-deficit/hyperactivity disorder in the brain.

NeuroImage: Clinical, 10, 274–282.
Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effec-

tive? A meta-analytic review. Developmental Psychology, 49, 270–291.
Melby-Lervag, M., Redick, T. S., & Hulme, C. (2016). Working memory

training does not improve performance on measures of intelligence or

other measures of "far transfer": Evidence from a meta-analytic

review. Perspectives on Psychological Science, 11, 512–534.
Meyers, E. M., Qi, X. L., & Constantinidis, C. (2012). Incorporation of new

information into prefrontal cortical activity after learning working

4890 SALMI ET AL.



memory tasks. Proceedings of the National Academy of Sciences of the

United States of America, 109, 4651–4656.
Nee, D. E., & Jonides, J. (2008). Neural correlates of access to short-term

memory. Proceedings of the National Academy of Sciences of the United

States of America, 105, 14228–14233.
Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal

and parietal activity after training of working memory. Nature Neuro-

science, 7, 75–79.
de Oliveira Rosa, V., Rosa Franco, A., Abrah~ao Salum Júnior, G., Moreira-

Maia, C. R., Wagner, F., Simioni, A., … Paim Rohde, L. A. (2019). Effects

of computerized cognitive training as add-on treatment to stimulants

in ADHD: A pilot fMRI study. Brain Imaging and Behavior, 19. https://

doi.org/10.1007/s11682-019-00137-0.

Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back

working memory paradigm: A meta-analysis of normative functional

neuroimaging studies. Human Brain Mapping, 25, 46–59.
Pallesen, K. J., Brattico, E., Bailey, C. J., Korvenoja, A., & Gjedde, A. (2009).

Cognitive and emotional modulation of brain default operation. Journal

of Cognitive Neuroscience, 21, 1065–1080.
Pergher, V., Shalchy, M. A., Pahor, A., Van Hulle, M. M., Jaeggi, S. M., &

Seitz, A. R. (2020). Divergent research methods limit understanding of

workingmemory training. Journal of Cognitive Enhancement, 4, 100–120.
Pollack, I., Johnson, L. B., & Knaff, P. R. (1959). Running memory span.

Journal of Experimental Psychology, 57, 137–146.
Redick, T. S., & Lindsey, D. R. (2013). Complex span and n-back measures

of working memory: A meta-analysis. Psychonomic Bulletin & Review,

20, 1102–1113.
Rosvold, H. E., Mirsky, A. F., Sarason, I., Bransome, E. D., Jr., & Beck, L. H.

(1956). A continuous performance test of brain damage. Journal of

Consulting Psychology, 20, 343–350.
Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., …

Eickhoff, S. B. (2012). Modelling neural correlates of working memory:

A coordinate-based meta-analysis. NeuroImage, 60, 830–846.
Rubia, K., Alegria, A. A., Cubillo, A. I., Smith, A. B., Brammer, M. J., &

Radua, J. (2014). Effects of stimulants on brain function in attention-

deficit/hyperactivity disorder: A systematic review and meta-analysis.

Biological Psychiatry, 76, 616–628.
Salmi, J., Nyberg, L., & Laine, M. (2018). Working memory training mostly

engages general-purpose large-scale networks for learning. Neurosci-

ence and Biobehavioral Reviews, 93, 108–122.
Salmi, J., Salmela, V., Salo, E., Mikkola, K., Leppamaki, S., Tani, P., … Alho K.

(2018). Out of focus - brain attention control deficits in adult ADHD.

Brain Research, 1692, 12–22.
Salminen, T., Mårtensson, J., Schubert, T., & Kühn, S. (2016). Increased

integrity of white matter pathways after dual n-back training.

NeuroImage, 133, 244–250.
Schmiedek, F., Lövden, M., & Lindenberger, U. (2014). A task is a task is a

task: Putting complex span, n-back, and other working memory indica-

tors in psychometric context. Frontiers in Psychology, 5, 1475.

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F.,

Behrens, T. E. J., Johansen-Berg, H., … Matthews, P. M. (2004).

Advances in functional and structural MR image analysis and imple-

mentation as FSL. NeuroImage, 23, S208–S219.
Sonuga-Barke, E. J., & Castellanos, F. X. (2007). Spontaneous attentional fluc-

tuations in impaired states and pathological conditions: A neurobiological

hypothesis.Neuroscience and Biobehavioral Reviews, 31, 977–986.
Soveri, A., Karlsson, E. P. A., Waris, O., Grönholm-Nyman, P., & Laine, M.

(2017). Pattern of near transfer effects following working memory

training with a dual n-back task. Experimental Psychology, 64, 240–252.

Soveri, A., Antfolk, J., Karlsson, L., Salo, B., & Laine, M. (2017). Working

memory training revisited: A multi-level meta-analysis of n-back train-

ing studies. Psychonomic Bulletin & Review, 24, 1077–1096.
Stevens, M. C., Gaynor, A., Bessette, K. L., & Pearlson, G. D. (2016). A pre-

liminary study of the effects of working memory training on brain

function. Brain Imaging and Behavior, 10, 387–407.
Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y.,

Komuro, N., … Kawashima, R. (2010). Training of working memory

impacts structural connectivity. The Journal of Neuroscience, 30,

3297–3303.
Takeuchi, H., Taki, Y., Nouchi, R., Hashizume, H., Sekiguchi, A.,

Kotozaki, Y., … Kawashima, R. (2013). Effects of working memory

training on functional connectivity and cerebral blood flow during rest.

Cortex, 49, 2106–2125.
Thompson, T. W., Waskom, M. L., & Gabrieli, J. D. (2016). Intensive work-

ing memory training produces functional changes in large-scale

frontoparietal networks. Journal of Cognitive Neuroscience, 28,

575–588.
Toomey, S. L., Sox, C. M., Rusinak, D., & Finkelstein, J. A. (2012). Why do

children with ADHD discontinue their medication? La Clinica

Pediatrica, 51, 763–769.
Valera, E. M., Faraone, S. V., Biederman, J., Poldrack, R. A., & Seidman, L. J.

(2005). Functional neuroanatomy of working memory in adults with

attention-deficit/hyperactivity disorder. Biological Psychiatry, 57,

439–447.
Valera, E. M., Brown, A., Biederman, J., Faraone, S. V., Makris, N.,

Monuteaux, M. C., … Seidman, L. J. (2010). Sex differences in the func-

tional neuroanatomy of working memory in adults with ADHD. The

American Journal of Psychiatry, 167, 86–94.
Wang, H., He, W., Wu, J., Zhang, J., Jin, Z., & Li, L. (2019). A

coordinate-based meta-analysis of the n-back working memory

paradigm using activation likelihood estimation. Brain and Cogni-

tion, 132, 1–12.
Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working mem-

ory: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3,

255–274.
Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M., &

Smith, S. M. (2004). Multilevel linear modelling for FMRI group analy-

sis using Bayesian inference. NeuroImage, 2, 1732–1747.
Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal

autocorrelation in Univariate linear modeling of FMRI data.

NeuroImage, 14, 1370–1386.
Yaple, Z., & Arsalidou, M. (2018). N-back working memory task: Meta-

analysis of normative fMRI studies with children. Child Development,

89, 2010–2022.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Salmi J, Soveri A, Salmela V, et al.

Working memory training restores aberrant brain activity in

adult attention-deficit hyperactivity disorder. Hum Brain Mapp.

2020;41:4876–4891. https://doi.org/10.1002/hbm.25164

SALMI ET AL. 4891

https://doi.org/10.1007/s11682-019-00137-0
https://doi.org/10.1007/s11682-019-00137-0
https://doi.org/10.1002/hbm.25164

	Working memory training restores aberrant brain activity in adult attention-deficit hyperactivity disorder
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Participants
	2.2  Self-ratings
	2.3  Cognitive measures
	2.3.1  Dual n-back task
	2.3.2  Single n-back tasks
	2.3.3  Digit and visuospatial running memory
	2.3.4  Digit span
	2.3.5  Continuous performance test

	2.4  Intervention procedure
	2.4.1  Experimental group
	2.4.2  Active control group

	2.5  Behavioral analyses
	2.6  MRI acquisition
	2.7  fMRI analyses

	3  RESULTS
	3.1  Behavioral performance at baseline (ADHD participants vs. healthy controls)
	3.2  Brain activity in the n-back tasks at baseline (ADHD vs. healthy controls)
	3.3  The effects of training on task performance in adults with ADHD
	3.4  The effects of training on WM-related brain activity in adults with ADHD

	4  DISCUSSION
	4.1  Baseline differences between ADHD versus healthy controls
	4.1.1  Cognitive functions
	4.1.2  WM-related brain functioning

	4.2  Training study
	4.2.1  Behavioral findings
	4.2.2  Training-related modulation of WM networks in ADHD
	4.2.3  Restoration of the aberrant activity in ADHD


	5  LIMITATIONS
	6  CONCLUSIONS
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


