93 research outputs found

    Safety of improved Milbond-TX mycotoxin binder when fed to broiler breeders above recommended levels

    Get PDF
    An increasing concern in poultry nutrition is the effects of mycotoxins in contaminated grain. Several new products have come onto the market that chemically bind these toxins preventing mycotoxicosis. However, many of these products have not been tested for safety if accidently overfed to broiler breeders. In order to simulate a feed mixing error at a feed mill, Improved Milbond-TX® was overfed to broiler breeders to see if this would cause any negative effects on bird performance. A typical corn-soybean based diet supplemented with Milbond-TX mycotoxin binder at three different levels of inclusion (0%, 0.5%, and 1%) was fed to 300 broiler breeder hens. Data were collected on egg production, egg weights, hatchability, fertility, and chick weights from 24 to 35 weeks of age. Eggs per hen housed were not significantly different between the three treatments. The differences in egg weights, hatchability, fertility, and chick weights were also insignificant among the three treatments. We were able to conclude that overfeeding Improved Milbond-TX had no negative effect on bird performance and is safe to feed at a level of up to 1%

    Does river restoration work? Taxonomic and functional trajectories at two restoration schemes

    Get PDF
    Rivers and their floodplains have been severely degraded with increasing global activity and expenditure undertaken on restoration measures to address the degradation. Early restoration schemes focused on habitat creation with mixed ecological success. Part of the lack of ecological success can be attributed to the lack of effective monitoring. The current focus of river restoration practice is the restoration of physical processes and functioning of systems. The ecological assessment of restoration schemes may need to follow the same approach and consider whether schemes restore functional diversity in addition to taxonomic diversity. This paper examines whether two restoration schemes, on lowland UK rivers, restored macroinvertebrate taxonomic and functional (trait) diversity and relates the findings to the Bradshaw's model of ecological restoration. The study schemes are considered a success in terms of restoring physical processes, longitudinal connectivity and the resulting habitat composition. However, the rehabilitation of macroinvertebrate community structure and function was limited and inconsistent, varying over time, depending on the restoration measure applied and the taxonomic or functional index considered. Resampling of species pools at each site revealed a role for functional redundancy, meaning that increases in functional diversity are more difficult to achieve than outcomes based on taxonomic analyses. Our results highlight the usefulness of applying functional traits alongside taxonomic indices in evaluating river restoration projects

    Invasive crayfish impacts on native fish diet and growth vary with fish life stage

    Get PDF
    Assessing the impacts of invasive organisms is a major challenge in ecology. Some widespread invasive species such as crayfish are potential competitors and reciprocal predators of ecologically and recreationally important native fish species. Here, we examine the effects of signal crayfish (Pacifastacus leniusculus) on the growth, diet, and trophic position of the chub (Squalius cephalus) in four rivers in Britain. Growth rates of 0+ chub were typically lower in sympatric populations with signal crayfish compared with allopatric populations, and this effect could be traced through to 2+ chub in one river. However, growth rates of older chub (5+ to 6+) were typically higher in the presence of crayfish. Sympatry with crayfish resulted in lower chub length-at-age and mass-at-age in half of the rivers sampled, with no change detected in the other rivers. Stable isotope analyses (δ13C and δ15N) revealed that both chub and crayfish were omnivorous, feeding at multiple trophic levels and occupying similar trophic positions. We found some evidence that chub trophic position was greater at invaded sites on one river, with no difference detected on a second river. Mixing models suggested crayfish were important food items for both small and large chub at invaded sites. This study provides evidence that invasive species can have both positive and negative effects on different life stages of a native species, with the net impact likely to depend on responses at the population level

    Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems

    Get PDF
    Temporary streams are defined by periodic flow cessation, and may experience partial or complete loss of surface water. The ecology and hydrology of these transitional aquatic-terrestrial ecosystems have received unprecedented attention in recent years. Research has focussed on the arid, semi-arid, and Mediterranean regions in which temporary systems are the dominant stream type, and those in cooler, wetter temperate regions with an oceanic climate influence are also receiving increasing attention. These oceanic systems take diverse forms, including meandering alluvial plain rivers, ‘winterbourne’ chalk streams, and peatland gullies. Temporary streams provide ecosystem services and support a diverse biota that includes rare and endemic specialists. We examine this biota and illustrate that temporary stream diversity can be higher than in comparable perennial systems, in particular when differences among sites and times are considered; these diversity patterns can be related to transitions between lotic, lentic, and terrestrial instream conditions. Human impacts on temperate-zone temporary streams are ubiquitous, and result from water-resource and land-use-related stressors, which interact in a changing climate to alter natural flow regimes. These impacts may remain uncharacterized due to inadequate protection of small temporary streams by current legislation, and hydrological and biological monitoring programs therefore require expansion to better represent temporary systems. Novel, temporary-stream-specific biomonitors and multi-metric indices require development, to integrate characterization of ecological quality during lotic, lentic, and terrestrial phases. In addition, projects to restore flow regimes, habitats, and communities may be required to improve the ecological quality of temporary stream

    Physical and biological controls on fine sediment transport and storage in rivers

    Get PDF
    Excess fine sediment, comprising particles <2 mm in diameter, is a major cause of ecological degradation in rivers. The erosion of fine sediment from terrestrial or aquatic sources, its delivery to the river, and its storage and transport in the fluvial environment are controlled by a complex interplay of physical, biological and anthropogenic factors. Whilst the physical controls exerted on fine sediment dynamics are relatively well-documented, the role of biological processes and their interactions with hydraulic and physico-chemical phenomena has been largely overlooked. The activities of biota, from primary producers to predators, exert strong controls on fine sediment deposition, infiltration and resuspension. For example, extracellular polymeric substances (EPS) associated with biofilms increase deposition and decrease resuspension. In lower energy rivers, aquatic macrophyte growth and senescence are intimately linked to sediment retention and loss, whereas riparian trees are dominant ecosystem engineers in high energy systems. Fish and invertebrates also have profound effects on fine sediment dynamics through activities that drive both particle deposition and erosion depending on species composition and abiotic conditions. The functional traits of species present will determine not only these biotic effects but also the responses of river ecosystems to excess fine sediment. We discuss which traits are involved and put them into context with spatial processes that occur throughout the river network. Whilst strides towards better understanding of the impacts of excess fine sediment have been made, further progress to identify the most effective management approaches is urgently required through close communication between authorities and scientists

    The effects of non-native signal crayfish (Pacifastacus leniusculus) on fine sediment and sediment-biomonitoring

    Get PDF
    The North American signal crayfish (Pacifastacus leniusculus) has invaded freshwater ecosystems across Europe. Recent studies suggest that predation of macroinvertebrates by signal crayfish can affect the performance of freshwater biomonitoring tools used to assess causes of ecological degradation. Given the reliance on biomonitoring globally, it is crucial that the potential influence of invasive species is better understood. Crayfish are also biogeomorphic agents, and therefore, the aim of this study was to investigate whether sediment-biomonitoring tool outputs changed following signal crayfish invasions, and whether these changes reflected post-invasion changes to deposited fine sediment, or changes to macroinvertebrate community compositions unrelated to fine sediment. A quasi-experimental study design was employed, utilising interrupted time series analysis of long-term environmental monitoring data and a hierarchical modelling approach. The analysis of all sites (n=71) displayed a small, but statistically significant increase between pre- and post-invasion index scores for the Proportion of Sediment-sensitive Invertebrates (PSI) index biomonitoring tool (4.1, p<0.001, 95%CI: 2.1, 6.2), which can range from 0 to 100, but no statistically significant difference was observed for the empirically-weighted PSI (0.4, p=0.742, 95%CI: -2.1, 2.9), or fine sediment (-2.3, p=0.227, 95%CI: -6.0, 1.4). Subgroup analyses demonstrated changes in biomonitoring tool scores ranging from four to 10 percentage points. Importantly, these subgroup analyses showed relatively small changes to fine sediment, two of which were statistically significant, but these did not coincide with the expected responses from biomonitoring tools. The results suggest that sediment-biomonitoring may be influenced by signal crayfish invasions, but the effects appear to be context dependent, and perhaps not the result of biogeomorphic activities of crayfish. The low magnitude changes to biomonitoring scores are unlikely to result in an incorrect diagnosis of sediment pressure, particularly as these tools should be used alongside a suite of other pressure-specific indices

    Evaluating the performance of taxonomic and trait-based biomonitoring approaches for fine sediment in the UK

    Get PDF
    Fine sediment is a leading cause for the decline of aquatic biodiversity globally. There is an urgent need for targeted monitoring to identify where management methods are required in order to reduce the delivery of fine sediment to aquatic environments. Existing sediment-specific biomonitoring indices and indices for general ecological health (taxonomic and trait-based) developed for use in the UK were tested in a representative set of lowland rivers in England that consisted of a gradient of fine sediment pressures (deposited and suspended, organic and inorganic). Index performance was modelled against environmental variables collected during sampling and hydrological and antecedent flow variables calculated from daily flow data. Sediment-specific indices were indicative of surface sediment deposits, whereas indices for general ecological health were more closely associated with the organic content of fine sediment. The performance of biotic indices along fine sediment gradients was predominantly dependent on hydrological variability. Functional diversity indices were poorly related to different measures of fine sediment, and further development of traits-based indices and trait databases are recommended. In summary, the results suggest that sediment-specific biomonitoring tools are suitable for evaluating fine sediment stress in UK rivers when index scores are viewed within the context of local hydrology

    Addressing road-river infrastructure gaps using a model-based approach

    Get PDF
    The world's rivers are covered over and fragmented by road infrastructure. Road-river infrastructure result in many socio-environmental questions and documenting where different types occur is challenged by their sheer numbers. Equally, the United Nations has committed the next decade to ecosystem restoration, and decision makers across government, non-government, and private sectors require information about where different types of road-river infrastructure occur to guide management decisions that promote both transport and river system resilience. Field-based efforts alone cannot address data and information needs at relevant scales, such as across river basins, nations, or regions to guide road-river infrastructure remediation. As a first step toward overcoming these data needs in Great Britain, we constructed a georeferenced database of road-river infrastructure, validated a subset of locations, and used a Boosted Regression Tree model-based approach with environmental data to predict which infrastructure are bridges and culverts. We mapped 110,406 possible road-river infrastructure locations and were able to either validate or predict which of 110,194 locations were bridges (n=60,385) or culverts (n=49,809). Upstream drainage area had the greatest contribution to determining infrastructure type: when <10 km2 our model correctly predicted culverts 73% of the time but only 60% of the time for bridges. Road type and stream gradient also influenced model results. Our model-based approach is readily applied to other locations and contexts and can be used to inform decisions about management of smaller infrastructure that are frequently overlooked worldwide

    Visualising and quantifying the variability of hydrological state in intermittent rivers

    Get PDF
    The hydrology of intermittent rivers has been characterised using either flow regimes, with limited spatial resolution, or network contraction, with limited temporal resolution. Exploration of the dynamic behaviour of these rivers, on which highly diverse biological communities depend, requires longitudinal, year-round observations with a more detailed classification of hydrological state than can be provided by gauging stations or wet/dry mapping alone. Observations of dry, ponded, moderate flow and high flow hydrological states spanning 20 years with approximately monthly frequency along ten chalk rivers in the south-east of England were visualised. There was slower transitioning between hydrological states and less spatial fragmentation on rivers with groundwater-dominated regimes than on those more influenced by superficial deposits. Seasonal patterns in both the composition and configuration of states were demonstrated using adapted landscape metrics. Responses to hydrological extremes and anthropogenic influences included drying downstream of the source and an artificially near-perennial reach. A framework is proposed for the categorisation of metrics of hydrological state and demonstrates that the classification and dimensional limitations of traditional approaches cannot fully characterise the hydrological behaviour of intermittent rivers. Such characterisation is an important step towards the tailored assessments required for effective management of these dynamic systems

    Evidence of taxonomic and functional recovery of macroinvertebrate communities following river restoration

    Get PDF
    River ecosystems have been heavily degraded globally due to channel hydromorphological modifications or alterations to catchment-wide processes. Restoration actions aimed at addressing these changes and restoring ecological integrity are increasing, but evidence of the effectiveness of these actions is variable. Using a rare 7-year before-after-control-impact (BACI) study of restoration of a lowland groundwater-fed river in England, UK, we explore changes in the macroinvertebrate community following the removal of impoundments and channel narrowing to aid restoration of physical processes. Restoration activity prompted significant taxonomic and functional responses of benthic invertebrate communities in the 4 years post-restoration. Specifically, significant gains in taxonomic and functional richness were evident following restoration, although corresponding evenness and diversity measures did not mirror these trends. Restoration activities prompted a shift to more rheophilic taxa and associated traits matching the physical changes to the channel and habitat composition. Temporal changes were clearer for taxonomic compositions compared to the functional properties of macroinvertebrate communities, indicating a functional redundancy effect of new colonists inhabiting restored reaches following restoration. The results highlight the value of long-term BACI studies in river restoration assessments, as well as project appraisals incorporating both taxonomic and functional observations. We highlight the urgent need of such studies to provide evidence to inform effective river restoration strategies to address future changes such as adaption to climate change and the biodiversity crisi
    • …
    corecore