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Abstract Assessing the impacts of invasive organisms is

a major challenge in ecology. Some widespread invasive

species such as crayfish are potential competitors and

reciprocal predators of ecologically and recreationally

important native fish species. Here, we examine the effects

of signal crayfish (Pacifastacus leniusculus) on the growth,

diet, and trophic position of the chub (Squalius cephalus) in

four rivers in Britain. Growth rates of 0? chub were typ-

ically lower in sympatric populations with signal crayfish

compared with allopatric populations, and this effect could

be traced through to 2? chub in one river. However,

growth rates of older chub (5? to 6?) were typically

higher in the presence of crayfish. Sympatry with crayfish

resulted in lower chub length-at-age and mass-at-age in

half of the rivers sampled, with no change detected in the

other rivers. Stable isotope analyses (d13C and d15N)
revealed that both chub and crayfish were omnivorous,

feeding at multiple trophic levels and occupying similar

trophic positions. We found some evidence that chub

trophic position was greater at invaded sites on one river,

with no difference detected on a second river. Mixing

models suggested crayfish were important food items for

both small and large chub at invaded sites. This study

provides evidence that invasive species can have both

positive and negative effects on different life stages of a

native species, with the net impact likely to depend on

responses at the population level.
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Introduction

The spread of organisms beyond their natural geographic

range is a serious global threat causing both ecological and

economic damage (Clavero and Garcia-Berthou 2005; Roy

et al. 2012) and rates of invasion show little sign of abating

in some systems (e.g. Jackson and Grey 2013). Aquatic

ecosystems are particularly vulnerable to the impacts of

invasive organisms; the spread of non-native species is

often facilitated by human activities and by the rapid dis-

persal possible in water (Rahel 2007; Strayer and Dudgeon

2010). A number of recent studies have demonstrated that

invasive species may increase or decrease the growth rates,

and alter the diets of, native organisms through several key

mechanisms, including competition, predation, and trans-

mission of pathogens (e.g. Corrreia 2001; King et al. 2006;

Maguire and Grey 2006). Where prey availability is

affected, a dietary shift to a different or previously under

exploited prey resource may occur in order to maintain

foraging efficiency (Syväranta and Jones 2008).
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Owing to their omnivory, large body size and potential

to dominate benthic biomass, some crayfish have become

key invasive species that can affect ecosystem processes,

services, and biodiversity, as well as the abundance, dis-

tribution, growth, diet and behaviour of native organisms

(Lodge et al. 2000). North American signal crayfish

(Pacifastacus leniusculus D. 1852) were introduced into

Europe in the 1970s for aquaculture and represent one of

the most widespread non-indigenous crayfish species

(Holdich et al. 2009). Research has tended to focus on the

interactions between signal and native crayfish (Holdich

et al. 2009; Olsson et al. 2009a; Ercoli et al. 2014) and

more recently with other invasive crayfish (Jackson et al.

2014); consequently less is known about interactions with

fishes. In rivers, signal crayfish may reduce the growth and

abundance of small benthic fishes, through interspecific

competition and predation (Guan and Wiles 1997; Light

2005), and out-compete fish for refugia (Griffiths et al.

2004); yet other research has reported no effects of inva-

sive crayfish on juvenile fish survival (Stenroth and

Nyström 2003). However, there have been relatively few

attempts to assess the specific impacts that signal crayfish

may have on larger fish species of ecological and recre-

ational importance (Reynolds 2011; Ruokonen et al. 2012;

but see Bašić et al. 2015). Understanding the full-range of

crayfish-fish interactions, and both the individual- and

population-level consequences are essential if fish popu-

lations are to be managed successfully.

Our study compared the growth, diet, and trophic

position of a native predatory fish when found in allopatry

and sympatry with signal crayfish, and tested three

hypotheses. Our first hypothesis was that fish growth rates

would be lower at invaded sites because signal crayfish

have been shown to reduce the availability of many prey

taxa, such as aquatic invertebrates (Stenroth and Nyström

2003; Crawford et al. 2006), benthic fishes (Guan and

Wiles 1997), and macrophytes (Nyström et al. 1996).

Such changes in prey availability led to our second

hypothesis; that fish diet would change after crayfish

invasion by shifting to increased use of prey items typi-

cally unavailable to crayfish, such as terrestrial inverte-

brates. Our third hypothesis was that the impacts of

crayfish upon fish would be greater for smaller relative to

larger individuals via reciprocal predation as well as

competition, with each species consuming particular life

stages of the other species. Crayfish predominantly feed

on fish eggs and larvae, but will also attack small indi-

viduals, whereas fish consumption of crayfish typically

increases with fork length and hence is greater for adult

fish (Hellawell 1971b; Blake and Hart 1995; Garcı́a-

Berthou 2002; Gladman et al. 2012).

We tested our hypotheses using chub (Squalius cephalus

L.), native to rivers across Europe, and a potential

competitor and reciprocal predator of invasive crayfish.

Chub are omnivorous, foraging on aquatic and terrestrial

invertebrates, macrophytes, detritus, fishes and other small

vertebrates (Hellawell 1971b; Mann 1976) and are popular

with anglers. Impacts on chub growth and feeding could

alter food web structure, energy flow, community compo-

sition and the recreational value of lowland rivers. Thus,

juvenile chub would experience reduced prey availability

and increased predation pressure, whereas larger chub

would experience smaller reductions in prey availability

(with larger gape increasing prey range) and this would be

partially offset by the greater inclusion of signal crayfish in

their diet (Nyström et al. 2006).

Materials and methods

We used two complementary study approaches to assess

the effects of signal crayfish on the growth, condition, and

trophic position of chub in four lowland British rivers

(Table 1). For two rivers (Evenlode and Cherwell), we

used a before–after approach to compare effects on chub

before and after signal crayfish invasion. From a further

two rivers (Rother and Chad Brook), we used a space-for-

time approach in which chub from sites with established

signal crayfish populations were compared with chub from

uninvaded sites upstream on those rivers; within each river

we selected invaded and uninvaded sites with comparable

hydrological conditions (i.e. discharge), physical structure

(i.e. channel width, depth), land use, and ecological com-

munities, in order to avoid such differences confounding

our ability to detect the effects of crayfish on chub. Signal

crayfish were first recorded in 2000 and 1995, in the

Evenlode and Cherwell, respectively, and thus archived

scales provided by the Environment Agency from chub

caught before 2000 (Evenlode) and 1995 (Cherwell) were

used to obtain pre-invasion growth data, while scales from

chub spawned after 2000 and 1995 were used to obtain

post-invasion data (Environment Agency data 2008). The

Rother was invaded by signal crayfish between 1973 and

1975 (Environment Agency data 2008). Extensive sam-

pling indicated that the invaded stretch extended from a

weir (51�00015.1600N, 00�53004.9600W) downstream to

51�00015.0700N, 00�52054.7000W; immediately upstream of

the weir, from 51�00011.9300N, 00�53005.0400W to

51�00009.0300N, 00�53041.0200W was uninvaded. Signal

crayfish invaded Chad Brook from the confluence with the

River Stour after 2000 to a weir at 52�04043.7100N,
00�42054.3100E (Environment Agency data 2008). Thus, the

river above the weir to 52�04049.3300N, 00�43031.4300E was

designated as the uninvaded site, while the river below the

weir to 52�26010.9900N, 00�43046.8000E was classified as the

invaded site.
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Growth rates

Age estimation based on annuli counts from calcified tis-

sues such as scales has been routinely used for chub

(Hellawell 1971a; Mann 1976). Scale-derived growth data

allow long-term assessment of the effects of perturbations

(i.e. growth pre- and post-crayfish invasion). Chub were

sampled by angling in the Rother (n = 32) and Chad

Brook (n = 36) during June–September in 2 years: 2008

and 2011. Mass (±1 g) and fork length (±1 mm) were

determined in the field and three scales were removed from

each chub from the flank between the dorsal fin and lateral

line. All individuals were returned alive. For the Rivers

Evenlode (n = 68) and Cherwell (n = 58), archived scales

provided by the Environment Agency from chub caught

before 2000 (Evenlode) and 1995 (Cherwell) were used to

obtain pre-invasion growth data, while scales from chub

spawned after 2000 and 1995 were used to obtain post-

invasion data. Scales were examined using a SMZ1000

dissection microscope (Nikon, Japan) and estimates of

length-at-age were back calculated using the Fraser-Lee

formula, assuming a length of first scale formation of

15.9 mm (Economou et al. 1991).

Stable isotope analyses

Stable isotope ratios of carbon and nitrogen vary in a

conservative, predictable manner between trophic levels

and thus changes in those ratios can be an effective tech-

nique in assessing dietary shifts of consumers in response

to the invasion of an ecosystem by an alien species

(Jackson et al. 2012). Non-destructive sampling is facili-

tated where tissue such as scales can be sampled, making

stable isotope analysis an ideal investigative tool for

aquatic ecosystems with small fish populations of conser-

vational or recreational value (Perga and Gerdeaux 2003;

Grey et al. 2009). We used the baseline-corrected estimates

of trophic height (sensu Cohen et al. 2003) to compare the

trophic position of chub between sites with and without

invasive crayfish and mixing models to determine relative

contributions from food sources. We combined these

complementary methods, assessing growth rates by tradi-

tional techniques of scalimetry and then analysing the

recent (\2 years) material for stable isotopes sequestered

in the scales (Grey et al. 2009). Scale isotope ratios were

converted to muscle ratios to facilitate the comparison with

crayfish and prey species.

We analysed d13C and d15N of chub scales, crayfish, and

putative prey to assess the trophic position of chub and

crayfish, their diets, and potential dietary overlap. Quali-

tative sampling was carried out in May 2008 and June 2011

at invaded and uninvaded sites on the Rother and Chad

Brook to collect potential dietary resources. Aquatic

invertebrates (min. n = 5 individuals pooled per taxa),

macrophytes (n = 5 leaves pooled from different individ-

ual plants of the dominant species present), and small fish

(n C 5 per species) were obtained by kick sampling; ter-

restrial invertebrates (n = 5 individuals pooled per species)

were obtained by sweeping riparian vegetation with a

butterfly net. Detritus (*250 g) was taken from the main

channel substrate. Signal crayfish were also collected from

invaded sites at Chad Brook (n = 18) and the Rother

(n = 19) by kick-sampling. Carapace length was deter-

mined for each individual by measuring from the rostrum

tip to carapace posterior. All samples except chub scales

were frozen at -20 �C until preparation for stable isotope

analysis. A portion of the outer section of each scale,

equivalent to the most recent two annuli, was removed for

stable isotope analysis. Each sample was macerated in a

glass vial and oven dried at 60 �C for 48 h, then pulverised

using an agate mortar and pestle, and 0.6 ± 0.05 mg

weighed into tin cups. Samples were combusted using an

elemental analyser (Flash EA, 1112 series, Thermo-Finni-

gan) coupled to a continuous flow isotope ratio mass

Table 1 A summary of key characteristics associated with each of our four study rivers (Environment Agency data 2008)

Parameter Evenlode Cherwell Chad Brook Rother

Catchment area (km2) 430.0 943.0 47.4 346.0

Length (km) 39.5 64.4 14.4 52.0

Mean annual discharge (m3 s-1) 3.8 5.5 0.3 2.3

Dominant land use Arable and pastoral

agriculture

Arable and pastoral

agriculture

Arable

agriculture

Arable and pastoral

agriculture

Year crayfish invasion first detected 2000 1995 2000 1975

Study approach used Before-after Before-after Space-for-time Space-for-time

Scalimetry used? Yes Yes Yes Yes

Stable isotope analysis used? No No Yes Yes

No. chub (non-invaded site) 28 24 21 14

No. chub (invaded site) 40 34 15 18

Invasive crayfish impacts on native fish diet and growth vary with fish life stage
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spectrometer (Finnigan MAT DeltaPlus, Thermo-

Finnigan).

Chub and crayfish stable isotope ratios were derived

from scale and muscle, respectively. Both d13C and d15N
vary between tissue types, but previous studies have shown

that there is a dependable relationship between fish muscle

and scale (e.g. Grey et al. 2009). Therefore, to better

compare chub to their diet and to the crayfish, a conversion

factor was derived from the stable isotope ratios for both

scale and muscle tissue. Fifteen chub of three age classes

(0?, 1?, and 2?; n = 5 for each class) from Calverton

Fish Farm (Nottingham, UK), were sacrificed; muscle was

excised from the left flank above the lateral line, and both

scale and muscle samples prepared as above.

Statistical analyses, isotope-metrics and mixing

models

Statistical analyses were performed using R version 3.1.2

(R Development Core Team 2015), with significant effects

attributed where p\ 0.05. For both our before–after

invasion sites (Evenlode and Cherwell) and our space-for-

time sites (Rother and Chad Brook) we tested the effects of

site (invaded versus uninvaded) and sampling year (2008

vs 2011; Rother and Chad Brook only) on (1) chub growth

rates for each age-class, and (2) trophic position (baseline-

corrected d15N), using linear models with Gaussian error

structures. Site and year were treated as fixed factors.

Analysis of covariance (ANCOVA) was used to test for

differences in the relationships between (1) fork length and

age, (2) mass and age, and (3) trophic position and fork

length, between invaded and uninvaded sites. Sampling

year (2008 or 2011) was also included as a covariate.

Normality and equality of variances were ascertained for

residuals via Anderson–Darling and Levene’s tests,

respectively. Linear regressions were plotted through six

basal consumers (invertebrates; three terrestrial, three

aquatic) for both the Rother (Aquatic: Trichoptera,

Amphipoda, Ephemeroptera; Terrestrial: Coleoptera,

Hemiptera, Hymenoptera) and Chad Brook (Aquatic:

Gastropoda, Amphipoda, Heteroptera; Terrestrial:

Coleoptera, Hemiptera, Diptera), and the perpendicular
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Fig. 1 A comparison of calculated mean (±SE) yearly growth rates of chub sampled from uninvaded (closed symbols) and invaded (open

symbols) sites on a the Rother, b Chad Brook, c the Cherwell, and d the Evenlode
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distance from the generated sloping baseline to the chub or

crayfish (measured as change along the d15N axis) gave the

trophic height for each individual.

Chub diet shifts ontogenetically, with Hellawell (1971b)

reporting that B5? chub consumed greater proportions of

terrestrial and aquatic invertebrates (excluding crayfish),

and less plant matter than C6? chub. The mean length of a

5? chub, based on data from this study and a meta-analysis

of chub length-at-age data (Mann 1976) was 231.7 mm.

Thus, to account for potential ontogenetic shifts, chub were

classified on fork length as either small (\232 mm; Rother,

uninvaded n = 4, invaded n = 5; Chad Brook, uninvaded

n = 2, invaded n = 12) or large (C232 mm; Rother,

uninvaded n = 10, invaded n = 13; Chad Brook, unin-

vaded n = 19, invaded n = 3). The baseline regressions

described earlier were used to estimate the mean (±95 %

CI) trophic height of chub and crayfish populations.

SIAR mixing model fractionation values (Parnell et al.

2010) were derived as follows. A mean D13C value

(2.1 %) was calculated from four controlled feeding

studies (Coregonus nasus: ?2.0 %, Hesslein et al. 1993;

Oncorhynchus mykiss: ?1.3 %, Rounick and Hicks 1985;

Oncorhynchus mykiss: ?1.9 %; Salvelinus fontinalis:

?3.3 % McCutchan Jr et al. 2003). As chub are omnivo-

rous and the fractionation can be dependent on the nitrogen

content of food items, a value of ?2.3 % was used for

D15N following McCutchan Jr et al. (2003). These values

were added to all source items under the following cate-

gories: crayfish, macrophytes, detritus, terrestrial

invertebrates, small fish, and aquatic invertebrates. Canni-

balism is not thought to be common among chub (Hella-

well 1971b; Mann 1976), and as few individuals were large

enough to ingest any other within our samples, cannibalism

was excluded from the analysis.

Although crayfish diet has also been reported to vary

ontogenetically (Guan and Wiles 1997; Bondar et al.

2005), analysing crayfish in various size classes had neg-

ligible effects on SIAR output and therefore crayfish were

analysed as a single group. A D13C value of ?2.0 % was

taken from a feeding experiment using Procambarus

clarkii (Rudnick and Resh 2005) while ?2.3 % was used

once more for nitrogen for the same reasons as for chub. As

cannibalism in signal crayfish has been reported, crayfish

were included as a potential food source (Guan and Wiles

1997; Stenroth and Nyström 2003).

Results

Chub from uninvaded sites on all four rivers exhibited

decreasing annual growth rate with increasing age

(Fig. 1). However, this pattern did not hold for the

invaded sections on three of our four rivers, where annual

growth rates increased again at ages of 5? or above (site

dependent). Chub growth rates were significantly lower at

invaded relative to uninvaded sites for 0? chub in all

rivers (Table 2). Whilst there were indications of lower

growth rates in 1? and 2? chub in some invaded river

Table 2 The effects of site (invaded versus uninvaded) and year (2008 vs 2011) on chub growth rates, as indicated by linear models

Age class Factor Rother Chad Brook Cherwell Evenlode

0? Site F1,30 = 11.44; p = 0.002 F1,34 = 13.94; p = 0.001 F1,56 = 12.63; p = 0.001 F1,66 = 62.95; p\ 0.001

Year F1,30 = 2.84; p = 0.103 F1,34 = 2.95; p = 0.095 – –

1? Site F1,30 = 1.63; p = 0.212 F1,34 = 1.27; p = 0.268 F1,49 = 0.36; p = 0.552 F1,64 = 23.43; p\ 0.001

Year F1,30 = 5.98; p = 0.021 F1,34 = 2.14; p = 0.153 – –

2? Site F1,30 = 1.49; p = 0.232 F1,34 = 0.68; p = 0.417 F1,35 = 1.42; p = 0.241 F1,62 = 8.51; p = 0.005

Year F1,30 = 0.79; p = 0.380 F1,34 = 0.34; p = 0.564 – –

3? Site F1,28 = 0.06; p = 0.803 F1,32 = 3.42; p = 0.074 F1,24 = 0.34; p = 0.565 F1,51 = 0.50; p = 0.483

Year F1,28 = 0.27; p = 0.610 F1,32 = 8.63; p = 0.006 – –

4? Site F1,18 = 3.75; p = 0.071 F1,23 = 0.42; p = 0.524 F1,15 = 0.55; p = 0.470 F1,41 = 0.53; p = 0.473

Year F1,18 = 2.95; p = 0.582 F1,23 = 5.05; p = 0.035 – –

5? Site F1,17 = 13.96; p = 0.002 F1,9 = 0.13; p = 0.725 F1,13 = 0.54; p = 0.476 F1,35 = 6.31; p = 0.017

Year F1,17 = 1.32; p = 0.269 – – –

6? Site F1,16 = 4.76; p = 0.047 F1,6 = 18.37; p = 0.005 – F1,33 = 1.49; p = 0.230

Year F1,16 = 1.66; p = 0.218 – – –

7? Site F1,16 = 0.13; p = 0.722 – – –

Year F1,16 = 0.17; p = 0.691 – – –

8? Site F1,10 = 1.42; p = 0.264 – – –

Year F1,10 = 0.11; p = 0.751 – – –

Significant effects are in bold

Invasive crayfish impacts on native fish diet and growth vary with fish life stage
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sites, growth rates were only significantly lower in the

Evenlode. Older fish from invaded sites exhibited accel-

erated growth rates compared to uninvaded sites in the

Rother at ages 5? and 6?, at 6? in Chad Brook, and at

5? in the Evenlode (Table 2). Chub growth rates differed

significantly between 2008- and 2011-sampled fish in

only 3 out of 13 models; 1? Rother, 3? and 4? Chad

Brook. Significantly greater fork length-at-age at unin-

vaded relative to invaded sites was found for Chad Brook

and Evenlode (Table 3; Fig. 2). Furthermore, Chad Brook

chub achieved greater mass-at-age at uninvaded relative

to invaded sites (Table 3; Fig. 2).

There was a linear relationship between chub scale and

muscle d13C (F1,13 = 40.17, p\ 0.001), and between scale

and muscle d15N from Calverton fish farm (F1,13 = 60.51,

p\ 0.001). Muscle tissue was 13C-depleted (mean ± SD:

-2.2 ± 0.5 %) and 15N-enriched (0.8 ± 0.3 %) relative

to scale tissue and the corresponding regression equations

shown (Supplementary Information) were used for con-

verting scale isotope ratios for further comparisons.

We found no evidence that chub muscle baseline-cor-

rected d15N was related to fork length or sampling year at

either the Rother or Chad Brook (Fig. 3; Table 3). How-

ever, chub baseline-corrected d15N was higher at the

invaded site on Chad Brook, but no differences were

detected for the Rother (Fig. 3; Table 3). The relative

trophic positions of chub and crayfish, as inferred from

isotopic bi-plots (Fig. 4), indicate that both species fed on

multiple food sources. Large chub from the invaded Rother

site had a mean (±95 % CI) trophic height (measured as

Table 3 The effects of chub age (A), site (S; invaded versus uninvaded) and year (Y; 2008 vs 2011; Rother and Chad Brook only) on chub fork

length (L), and mass (M)

Model River Term a (±SE) Test statistic p d.f. R2 adj

L = aA ? aS ? aY Rother Full model – 32.43 \0.001 31 75.3 %

A 31.06 (±3.68) 8.44 \0.001 – –

S 8.67 (±20.48) 0.42 0.675 – –

Y -8.80 (±8.40) -1.05 0.303 – –

L = aA ? aS ? aY Chad Brook Full model – 55.80 \0.001 35 82.5 %

A 28.63 (±3.16) 9.06 \0.001 – –

S -39.60 (±10.90) -3.63 \0.001 – –

Y 6.76 (±4.38) 4.38 0.133 – –

L = aA ? aS Cherwell Full model – 507.30 \0.001 203 83.3 %

A 32.57 (±1.02) 31.83 \0.001 – –

S -0.71 (±3.19) 0.22 0.824 – –

L = aA ? aS Evenlode Full model – 975.90 \0.001 299 86.7 %

A 36.48 (±1.01) 36.09 \0.001 – –

S -41.16 (±3.32) -12.40 \0.001 – –

M = aA ? aS ? aY Rother Full model – 23.22 \0.001 31 68.4 %

A 135.43 (±19.46) 6.96 \0.001 – –

S 158.98 (±108.27) 1.47 0.153 – –

Y -46.39 (±44.39) -1.05 0.305 – –

M = aA ? aS ? aY Chad Brook Full model – 55.60 \0.001 35 82.4 %

A 96.35 (±11.49) 8.38 \0.001 – –

S -171.11 (±39.64) -4.32 \0.001 – –

Y -4.08 (±15.94) -0.26 0.800 – –

N = aL ? aS ? aY Rother Full model – 3.73 0.023 31 20.9 %

L 0.002 (±0.002) 0.72 0.479 – –

S -0.457 (±0.354) -1.29 0.208 – –

Y 0.138 (±0.188) 0.73 0.469 – –

N = aL ? aS ? aY Chad Brook Full model – 3.60 0.024 35 18.2 %

L 0.005 (±0.003) 1.60 0.119 – –

S 0.634 (±0.298) 2.13 0.041 – –

Y -0.199 (±0.136) -1.47 0.151 – –

We also tested the effects of chub fork length, site, and year on chub baseline corrected d15N (N) for the Rother and Chad Brook. Test statistics

were F and t for full model and individual terms respectively

K. A. Wood et al.
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d15N) of 5.5 ± 0.9 %, compared with 4.7 ± 0.7 at the

uninvaded site (Table 4). Similarly, small chub at the

invaded site had a trophic height of 5.1 ± 1.5 compared

with 4.5 ± 0.5 at the uninvaded site. The mean trophic

heights of large and small chub from the invaded site were

1.1 and 0.8 % higher, respectively, than that of crayfish.

However, in Chad Brook both large and small chub were

estimated to have similar trophic heights in invaded and
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Fig. 2 Chub fork length-at-age at uninvaded (solid circles and line)

and invaded (open circles and dashed line) sites on a the Rother,

b Chad Brook, c the Cherwell, and d the Evenlode. Chub mass-at-age

at uninvaded (solid circles and line) and invaded (open circles and

dashed line) sites on e the Rother and f Chad Brook
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uninvaded sites, with crayfish trophic height similar to

those of chub (Table 4).

SIAR model ouputs indicated that terrestrial inverte-

brates were the most important prey resource for chub,

comprising up to 50 % of chub diet (Fig. 5; Supplementary

Information). In contrast, aquatic invertebrates (other than

crayfish) constituted \20 % of chub diet for all sites on

both rivers. Furthermore, small chub relied even less on

aquatic invertebrates at invaded sites, declining from 13 to

7 % in the Rother and from 17 to 7 % in Chad Brook. At

invaded sites signal crayfish were estimated to make a

mean contribution of up to 26 and 19 % of chub diet in the

Rother and Chad Brook, respectively. Similar dietary use

of crayfish was found for both size classes of chub. For

both rivers the contribution of small fish to chub diet was

found to be reduced at the invaded sites. Crayfish exhibited

a high degree of omnivory in both rivers, with modelled

dietary contributions showing wide ranges for all potential

food sources (Supplementary Information). Crayfish in

Chad Brook showed greater consumption of specific taxa,

with aquatic invertebrates and small fish making mean

dietary contributions of 42 and 20 %, respectively. Can-

nibalism among signal crayfish was estimated to make a

mean contribution of 12 % to crayfish diet in both rivers.

Discussion

Many studies have reported on the negative impacts of

invasive species, but there have been relatively few on how

the influence of an invader may be beneficial to a recipient

system (Caldow et al. 2007; Letnic et al. 2009; Tablado

Fig. 3 Baseline corrected chub d15N as a function of fork length for

uninvaded (solid circles) and invaded (open circles) sites on a the

Rother and b Chad Brook

Fig. 4 Isotope bi-plots indicating the mean (±standard error) for

chub, crayfish, and the putative prey of both species, for a the Rother

and b Chad Brook. For the Rother small fish were 1? cyprinids,

Phoxinus phoxinus, Cottus gobio, and Barbatula barbatula, aquatic

invertebrates were Trichoptera, Gammarids, and Ephemeroptera, and

terrestrial invertebrates were Formicidae, Arachnidae, Hemiptera,

Diptera, and Coleoptera. For Chad Brook small fish were Phoxinus

phoxinus, Cottus gobio, Barbatula barbatula, and Gasterosteus

aculeatus, aquatic invertebrates were Gammarids, Calopteryx sp.,

Heteroptera, Limnaea, and Trichoptera, and terrestrial invertebrates

Formicidae, Arachnidae, Diptera, Coleoptera, and Gastropoda
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et al. 2010). Our study illustrates that there can be both

beneficial and detrimental consequences of invaders on a

native species, with the life stage of the native species

influencing whether the impact was positive or negative.

The growth rates of young individuals of a native fish were

reduced when in sympatry with a non-native crustacean,

yet some older fish exhibited increased growth rates in the

presence of the invader. Our isotope mixing models sug-

gests that crayfish were incorporated as an additional

dietary component at invaded sites. Therefore, the influ-

ence of the invasive crayfish may be perceived as both

negative and positive to chub.

At all sites where chub existed in sympatry with signal

crayfish, the 0? fish exhibited lower growth rates, and this

was maintained in the Evenlode until fish were aged 2?.

Signal crayfish can prey directly upon small fish (Guan and

Wiles 1997) and consequently small fish may spend more

time engaged in predator-avoidance, limiting foraging

opportunities (Light 2005) and reducing growth rates in

chub (Allouche and Gaudin 2001). Whilst our results were

correlative, a consistent pattern of reduced juvenile chub

growth was detected in our four datasets: a space-for-time

approach in Evenlode and Cherwell, and a before-after

invasion approach in Rother and Chad Brook. Chub growth

rates will likely have been further influenced by additional,

unmeasured variables, as evidenced by the observed inter-

annual differences in chub growth rates in 3 of 13 compar-

isons. Such inter-annual differences may reflect between-

year variation in environmental conditions such as water

temperature and flow speed, which are known to influence

the growth rates of cyprinid fishes (Cragg-Hine and Jones

1969). Such variables could have interacted with crayfish

presence to modulate the effects of crayfish on chub, for

example by increasing crayfish numbers or activity (Olsson

et al. 2009b). Furthermore, changes in crayfish densities

could have affected chub growth rates, as crayfish impacts

on native species are typically density-dependent (e.g. Flint

and Goldman 1975). Whilst our study did not account for

these additional factors, we were still able to detect effects of

crayfish invasion on chub growth rates.

Older chub were generally found to exhibit higher

growth rates at invaded sites in three of the four rivers

studied. The age at which chub from the invaded sites

achieved greater growth rates than those of chub from

uninvaded sites varied from 5? to 6?. Increased chub

growth rates associated with the presence of signal crayfish

may indicate greater predation on crayfish by larger chub, a

plausible inference considering the 15N- and 13C-enrich-

ment of larger chub. Thus the outputs from the mixing

models were consistent with the pattern expected of a gape-

limited predator of crayfish. Although Evenlode chub aged

6? exhibited slightly higher growth rates in the post-in-

vasion period, the difference was not significant. Overall,

the data upheld our first hypothesis, that juvenile chub

growth rates would be lower when sympatric with signal

crayfish, and older, larger chub would show the opposite

trend.

This study provides evidence that signal crayfish may

alter the size structure of chub populations. Chub length-at-

age was reduced at two of the four invaded sites tested;

methodology did not appear to influence our results, as

reduced length-at-age was detected for sites at which

before-after invasion site (Evenlode) and space-for-time

(Chad Brook) approaches were used. Furthermore, mass-

at-age was reduced at one of the two invaded sites tested,

whereas no increases either length-at-age or mass-at-age in

response to invasion were detected, probably due to

decreased growth rates of young chub in the presence of

signal crayfish. Lower 0? growth has been reported to

result in smaller annual growth increments across the

lifetime of individual chub (Bolland et al. 2007). In the

Rother and Cherwell, older (C5?) chub from the invaded

sites were found to attain greater length-at-age than con-

specifics at uninvaded sites, despite younger (B3?) chub

from the same invaded sites exhibiting lower length-at-age

values. Based on our complementary stable isotope data,

we propose that greater length-at-age in some older chub

was the result of consuming invasive crayfish. Our results

concur with previous findings that predators can achieve

higher post-invasion growth rates and ultimate body size

either by direct predation of the invasive species or by

indirect effects (King et al. 2006). The changes in chub

size-at-age have implications for food web structure and

the abundances of prey items as energy requirement and

prey availability (due to gape-limitation) are related

strongly to fish body size (Wieser 1991).

Table 4 The trophic position of chub and crayfish, as measured by

the perpendicular distance from a linear regression fitted to six basal

resources (sloping isotope baseline) to the consumer d15N value

River Group Baseline corrected d15N (%)

Mean ±95 % CI

Rother

Uninvaded Small chub 4.54 0.48

Large chub 4.69 0.44

Invaded Small chub 5.14 1.27

Large chub 5.46 0.47

Crayfish 4.35 0.30

Chad Brook

Uninvaded Small chub 5.53 1.36

Large chub 5.58 0.38

Invaded Small chub 4.74 0.26

Large chub 5.52 0.48

Crayfish 5.48 0.30
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Our second hypothesis, that chub diet would be altered

in the presence of crayfish, is confirmed not only through

the incorporation of the invasive crayfish into the diet of

chub, but also by a reduction in reliance upon aquatic

invertebrates by small chub, and reduced reliance on small

fish by chub of both size classes, at the invaded sites. A

reduction in the contribution of one food source must lead

to compensation through greater dependence on another.

Hellawell (1971b) reported that where larger chub exhibit

reduced consumption of terrestrial invertebrates, there was

increased consumption of fish, frogs and native crayfish. It

is therefore likely that an invasive crayfish would be

increasingly exploited in the same manner. Furthermore,

considering the documented negative effects of crayfish on

aquatic invertebrates and macrophytes, it seems less likely

that these groups should be more heavily relied upon by the

chub of the invaded sites. Indeed, the reduced contribution

of aquatic invertebrates (other than crayfish) to chub diet at

invaded sites is consistent with previous research that

found invasive signal crayfish reduced the total numbers of

aquatic invertebrate by 60 % (Crawford et al. 2006). We

found some evidence that the potential incorporation of

crayfish into the diets of larger chub resulted in elevated

baseline corrected d15N values at Chad Brook, but not at

the Rother. Chub at invaded sites incorporated high d15N
crayfish into their diet, which likely raised large chub d15N
at invaded sites. SIAR output indicated greater consump-

tion of terrestrial invertebrates by chub compared to cray-

fish. Morphology and behaviour limits crayfish primarily to

benthic foraging (Guan and Wiles 1998) and therefore

precludes access to surface drifting prey. However, once

terrestrial invertebrates sink they become available to

crayfish. In contrast, chub utilise the entire water column

from benthos to surface when foraging (Hellawell 1971b).

The combined growth data and stable isotope evidence

does not support our third hypothesis; that changes in

growth rate and dietary shifting would be more pronounced

in younger chub. In contrast, the increase in growth rates of

older chub at the Rother and Chad Brook were greater in

magnitude than those differences between the 0? fish.

However, as isotope data were only acquired for C3? chub

the impact of crayfish invasion on the diet and trophic

position of B2? individuals, which exhibited lower growth

rates in sympatry with signal crayfish, remain unknown.

We have shown that crayfish invasion can have both

positive and negative impacts on the diet and growth of a

native fish, using signal crayfish and chub as exemplars.

We found some evidence that older chub benefit from the

inclusion of crayfish in their diet and can achieve higher

growth rates. Younger chub suffer decreased growth rates,

probably due to increased predator-avoidance and reduced

prey availability. Potentially, an individual chub may

experience both negative and positive impacts of invasion

as it progresses through different life stages. Whether

crayfish invasion can be considered beneficial or detri-

mental to the native fish population as a whole will depend,

at least in part, on whether the lower juvenile growth rates

translate into lower recruitment and thus reduced popula-

tion size. Further longer-term studies of the population

level consequences of crayfish invasion are required. Sev-

eral studies have found lower populations in the presence

of signal crayfish (Guan and Wiles 1997; Peay et al. 2009),

whereas others have not (Stenroth and Nyström 2003;

Degerman et al. 2007); comprehensive studies of fish

populations pre- to post-invasion and assessed relative to

the ‘natural state’ (i.e. with the presence of native crayfish)

are required to address this question.
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