143 research outputs found

    Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes.

    Get PDF
    Both theory and evidence suggest that diversity stabilises productivity in herbaceous plant communities through a combination of overyielding, species asynchrony and favourable species interactions. However, whether these same processes also promote stability in forest ecosystems has never been tested. Using tree ring data from permanent forest plots across Europe, we show that aboveground wood production is inherently more stable through time in mixed-species forests. Faster rates of wood production (i.e. overyielding), decreased year-to-year variation in productivity through asynchronous responses of species to climate, and greater temporal stability in the growth rates of individual tree species all contributed strongly to stabilising productivity in mixed stands. Together, these findings reveal the central role of diversity in stabilising productivity in forests, and bring us closer to understanding the processes which enable diverse forests to remain productive under a wide range of environmental conditions.This is the author's accepted manuscript and will be under embargo until the 13th of October 2015. The final version will be published by Wiley in Ecology Letters. The 'Early View' article is available online here: http://onlinelibrary.wiley.com/doi/10.1111/ele.12382/abstract

    Climate modulates the effects of tree diversity on forest productivity

    Get PDF
    1. Despite growing evidence that, on average, diverse forests tend to be more productive than species-poor ones, individual studies often report strongly contrasting relationships between tree species richness and above-ground wood production (AWP). In the attempt to reconcile these apparently inconsistent results, we explored whether the strength and shape of AWP–diversity relationships shifts along spatial and temporal environmental gradients in forests across Europe. 2. We used tree ring data from a network of permanent forest plots distributed at six sites across Europe to estimate annual AWP over a 15-year period (1997–2011). We then tested whether the relationship between tree species richness and AWP changes (i) across sites as a function of large-scale gradients in climatic productivity and tree packing density and (ii) among years within each sites as a result of fluctuating climatic conditions. 3. AWP–species richness relationships varied markedly among sites. As predicted by theory, the relationship shifted from strongly positive at sites where climate imposed a strong limitation on wood production and tree packing densities were low, to weakly negative at sites where climatic conditions for growth were most suitable. In contrast, we found no consistent effect of interannual fluctuations in climate on the strength of AWP–species richness relationships within sites. 4. Synthesis. Our results indicate that the shape and strength of the relationship between tree diversity and forest productivity depends critically on environmental context. Across Europe, tree diversity shows the greatest potential to positively influence forest productivity at either end of the latitudinal gradient, where adverse climatic conditions limit productivity and lead to the development of less densely packed stands.The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 265171.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/1365-2745.1252

    Good things take time – diversity effects on tree growth shift from negative to positive during stand development in boreal forests

    Get PDF
    Long‐term grassland biodiversity experiments have shown that diversity effects on productivity tend to strengthen through time, as complementarity among coexisting species increases. But it remains less clear whether this pattern also holds for other ecosystems such as forests, and if so why.Here we explore whether diversity effects on tree growth change predictably during stand development in Finland's boreal forests. Using tree ring records from mature forests, we tested whether diameter growth trajectories of dominant tree species growing in mixture differed from those in monoculture. We then compared these results with data from the world's longest running tree diversity experiment, where the same combinations of species sampled in mature forests were planted in 1999.We found that diversity effects on tree growth strengthened progressively through time, only becoming significantly positive around 20 years after seedling establishment. This shift coincided with the period in which canopy closure occurs in these forests, at which time trees begin to interact and compete above‐ground. These temporal trends were remarkably consistent across different tree species sampled in mature forests, and broadly matched growth responses observed in the much younger experimental plots.Synthesis. Our results mirror those from grassland ecosystems and suggest that canopy closure is a key phase for promoting niche complementarity in diverse tree communities. They also provide a series of testable hypotheses for the growing number of tree diversity experiments that have been established in recent years

    Strength in numbers:combining multi-source remotely sensed data to model plant invasions in coastal dune ecosystems

    Get PDF
    International audienceA common feature of most theories of invasion ecology is that the extent and intensity of invasions is driven by a combination of drivers, which can be grouped into three main factors propagule pressure (P), abiotic drivers (A) and biotic interactions (B). However, teasing apart the relative contribution of P, A and B on Invasive Alien Species (IAS) distributions is typically hampered by a lack of data. We focused on Mediterranean coastal dunes as a model system to test the ability of a combination of multi-source Remote Sensing (RS) data to characterize the distribution of five IAS. Using generalized linear models, we explored and ranked correlates of P, A and B derived from high-resolution optical imagery and three-dimensional (3D) topographic models obtained from LiDAR, along two coastal systems in Central Italy (Lazio and Molise Regions). Predictors from all three factors contributed significantly to explaining the presence of IAS, but their relative importance varied among the two Regions, supporting previous studies suggesting that invasion is a context-dependent process. The use of RS data allowed us to characterize the distribution of IAS across broad, regional scales and to identify coastal sectors that are most likely to be invaded in the future. © 2019 by the authors

    Tracking shifts in forest structural complexity through space and time in human‐modified tropical landscapes

    Get PDF
    Habitat structural complexity is an emergent property of ecosystems that directly shapes their biodiversity, functioning and resilience to disturbance. Yet despite its importance, we continue to lack consensus on how best to define structural complexity, nor do we have a generalised approach to measure habitat complexity across ecosystems. To bridge this gap, here we adapt a geometric framework developed to quantify the surface complexity of coral reefs and apply it to the canopies of tropical rainforests. Using high‐resolution, repeat‐acquisition airborne laser scanning data collected over 450 km2 of human‐modified tropical landscapes in Borneo, we generated 3D canopy height models of forests at varying stages of recovery from logging. We then tested whether the geometric framework of habitat complexity – which characterises 3D surfaces according to their height range, rugosity and fractal dimension – was able to detect how both human and natural disturbances drive variation in canopy structure through space and time across these landscapes. We found that together, these three metrics of surface complexity captured major differences in canopy 3D structure between highly degraded, selectively logged and old‐growth forests. Moreover, the three metrics were able to track distinct temporal patterns of structural recovery following logging and wind disturbance. However, in the process we also uncovered several important conceptual and methodological limitations with the geometric framework of habitat complexity. We found that fractal dimension was highly sensitive to small variations in data inputs and was ecologically counteractive (e.g. higher fractal dimension in oil palm plantations than old‐growth forests), while rugosity and height range were tightly correlated (r = 0.75) due to their strong dependency on maximum tree height. Our results suggest that forest structural complexity cannot be summarised using these three descriptors alone, as they overlook key features of canopy vertical and horizontal structure that arise from the way trees fill 3D space. Keywords: Forest disturbance, LiDAR, logging, recovery, remote sensing, structural complexit

    Drivers of aboveground wood production in a lowland tropical forest of West Africa:teasing apart the roles of tree density, tree diversity, soil phosphorus, and historical logging

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Wiley.1. Tropical forests currently play a key role in regulating the terrestrial carbon cycle and abating climate change by storing carbon in wood. However, there remains considerable uncertainty as to whether tropical forests will continue to act as carbon sinks in the face of increased pressure from expanding human activities. Consequently, understanding what drives productivity in tropical forests is critical. 2. We used permanent forest plot data from the Gola Rainforest National Park (Sierra Leone) – one of the largest tracts of intact tropical moist forest in West Africa – to explore how (i) stand basal area and tree diversity, (ii) past disturbance associated with past logging and (iii) underlying soil nutrient gradients interact to determine rates of aboveground wood production (AWP). We started by statistically modelling the diameter growth of individual trees and used these models to estimate AWP for 142 permanent forest plots. We then used structural equation modelling to explore the direct and indirect pathways which shape rates of AWP. 3. Across the plot network, stand basal area emerged as the strongest determinant of AWP, with densely packed stands exhibiting the fastest rates of AWP. In addition to stand packing density, both tree diversity and soil phosphorus content were also positively related to productivity. By contrast, historical logging activities negatively impacted AWP through the removal of large trees, which contributed disproportionately to productivity. 4. Synthesis. Understanding what determines variation in wood production across tropical forest landscapes requires accounting for multiple interacting drivers – with stand structure, tree diversity and soil nutrients all playing a key role. Importantly, our results also indicate that logging activities can have a long-lasting impact on a forest’s ability to sequester and store carbon, emphasizing the importance of safeguarding old-growth tropical forests.This study was funded through a grant from the Cambridge Conservation Initiative Collaborative Fund entitled “Applications of airborne remote sensing to the conservation management of a West African National Park”. T.J. was funded in part through NERC grant NE/K016377/1. A.C.S. was funded in part through a grant from the Percy Sladen Memorial Fund
    • 

    corecore