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Habitat structural complexity is an emergent property of ecosystems that directly 
shapes their biodiversity, functioning and resilience to disturbance. Yet despite its 
importance, we continue to lack consensus on how best to define structural complex-
ity, nor do we have a generalised approach to measure habitat complexity across ecosys-
tems. To bridge this gap, here we adapt a geometric framework developed to quantify 
the surface complexity of coral reefs and apply it to the canopies of tropical rainforests. 
Using high-resolution, repeat-acquisition airborne laser scanning data collected over 
450 km2 of human-modified tropical landscapes in Borneo, we generated 3D canopy 
height models of forests at varying stages of recovery from logging. We then tested 
whether the geometric framework of habitat complexity – which characterises 3D 
surfaces according to their height range, rugosity and fractal dimension – was able 
to detect how both human and natural disturbances drive variation in canopy struc-
ture through space and time across these landscapes. We found that together, these 
three metrics of surface complexity captured major differences in canopy 3D struc-
ture between highly degraded, selectively logged and old-growth forests. Moreover, 
the three metrics were able to track distinct temporal patterns of structural recovery 
following logging and wind disturbance. However, in the process we also uncovered 
several important conceptual and methodological limitations with the geometric 
framework of habitat complexity. We found that fractal dimension was highly sensitive 
to small variations in data inputs and was ecologically counteractive (e.g. higher fractal 
dimension in oil palm plantations than old-growth forests), while rugosity and height 
range were tightly correlated (r = 0.75) due to their strong dependency on maximum 
tree height. Our results suggest that forest structural complexity cannot be summarised 
using these three descriptors alone, as they overlook key features of canopy vertical and 
horizontal structure that arise from the way trees fill 3D space.
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Introduction

Tropical forests are structurally complex ecosystems that play 
a crucial role in regulating carbon and water cycling on land 
(Pan  et  al. 2011, Malhi 2012, Mitchard 2018, Staal  et  al. 
2020, Smith et al. 2023) and are among the most biodiverse 
habitats on Earth, accounting for more than two-thirds of ter-
restrial biodiversity (Gibson et al. 2011, Barlow et al. 2018, 
Gatti  et  al. 2022, Pillay  et  al. 2022). However, the major-
ity of the world’s remaining tropical forests have been altered 
or disturbed in some way, including through logging, habi-
tat fragmentation and degradation, fire and extreme events 
linked to climate change (Asner  et  al. 2010, Taubert  et  al. 
2018, Berenguer et al. 2021, Saatchi et al. 2021, Lapola et al. 
2023). These human and natural disturbances profoundly 
alter the three-dimensional (3D) structure of forest canopies 
(Ordway and Asner 2020, Milodowski et al. 2021,  Jucker 
2022, Reis et al. 2022, Choi et al. 2023). In doing so they 
affect the way in which tropical forests sequester and store 
carbon, cycle nutrients, regulate microclimate and pro-
vide habitat for countless organisms (Jucker  et  al. 2018a, 
Frenne et al. 2021, Malhi et al. 2022, Heinrich et al. 2023, 
Mills et al. 2023). Therefore, characterising how disturbance 
shapes the 3D structure and dynamics of tropical forest cano-
pies is central to understanding its impacts on carbon cycling 
and biodiversity, as well as building more realistic simulation 
models of these ecosystems (Taubert et al. 2015, Maréchaux 
and Chave 2017, Jucker 2022).

Growing access to remote sensing technologies such as 
airborne laser scanning (ALS, or LiDAR) has revolution-
ised our ability to map the 3D structure of forest canopies 
in high detail across broad spatial scales (Kellner and Asner 
2009, Jucker  et  al. 2018b, Valbuena  et  al. 2020,  Jucker 
2022, Lines et al. 2022). ALS data are transforming how we 
study and monitor forests, allowing us to explore how and 
why forest 3D structure varies across both space (Jucker et al. 
2018b, Ordway and Asner 2020, Milodowski  et  al. 2021, 
Reis et al. 2022, Jucker et al. 2023) and time (Wedeux et al. 
2020, Cushman et al. 2021, Nunes et al. 2021, Choi et al. 
2023). However, despite these advances, we continue to 
lack a clear consensus on what ‘structural complexity’ actu-
ally is and which attributes of 3D canopy structure are most 
ecologically relevant to measuring it (Valbuena et al. 2020, 
Ehbrecht et al. 2021, Lines et al. 2022, Atkins et al. 2023a, 
LaRue et al. 2023). This has led to a proliferation of context-
specific canopy structural metrics that can be derived from 
ALS, without enough effort to consider how these might gen-
eralise across different forest ecosystems or drivers of distur-
bance (Lines et al. 2022, Atkins et al. 2023a, b).

To address this challenge, several efforts have been made to 
characterise structural complexity from first principles. These 
theoretical frameworks often start from the idea that biologi-
cal patterns repeat themselves across scales (e.g. from leaves, 
to branches, trunks and entire forest stands) in ways that 
are predictable and quantifiable (Zeide 1991, Enquist et al. 
2003, Niklas 2004, Fischer and Jucker 2023). One such 
example is the geometric theory of surface habitat complexity 

developed by Torres-Pulliza et al. (2020), which summarises 
habitat structural complexity using three surface descriptors 
– height range, surface rugosity and fractal dimension – and 
the geometric constraints that link them together (Fig. 1). 
While originally developed for coral reefs, this geometric 
framework was designed specifically to be broadly applicable 
across ecosystems and can be applied to any high-resolution 
3D surface model of a habitat, such as those that can be 
generated from ALS. Since first being proposed, aspects of 
this theoretical framework have been called into question, 
particularly around the estimation and ecological relevance 
of fractal dimension as a measure of structural complexity 
(Loke and Chisholm 2022, 2023, Fischer and Jucker 2023, 
Madin et al. 2023). However, no one has yet tested how well 
this framework is able to characterise the impacts of distur-
bance on the 3D structure of other structurally complex eco-
systems, such as tropical forests. Nor has anyone explored 
how these three surface descriptors relate to other widely used 
metrics of canopy structure derived from ALS.

Here, we bring together ALS datasets acquired across a 
forest disturbance gradient in Malaysian Borneo (Fig. 2), 
ranging from old-growth rainforests that are home to some 
of the world’s tallest flowering plants, selectively logged for-
ests at varying stages of recovery and oil palm landscapes 
(Jucker et al. 2018a, Shenkin et al. 2019, Milodowski et al. 
2021). Using these unique datasets, we started by rigorously 
testing the sensitivity of the three structural metrics to the 
resolution and spatial scale of ALS data. Then, we assessed 
how height range, rugosity and fractal dimension relate to 
other widely used metrics of canopy height, density and 
openness. Next, we used a space-for-time approach to com-
pare the structural complexity of forest landscapes at different 
stages of recovery following disturbance from logging. This 
allowed us to determine how well the geometric theory of 
surface habitats can capture the legacy of these past distur-
bances on the 3D structure of the canopy. Finally, we used 
repeat-acquisition ALS data to directly track changes in 
canopy structural complexity through time. In doing so, we 
tested the ability of this framework to tease apart the effects 
of different types of anthropogenic and natural disturbance 
and recovery processes.

Material and methods

Study region

Our study focuses on several sites in the Malaysian state of 
Sabah in Borneo (Fig. 2). Sabah has a tropical and largely 
aseasonal climate, with a mean annual rainfall of approxi-
mately 2700 mm year−1 and a mean annual temperature of 
26.7 °C (Walsh and Newbery 1999, Kumagai and Porporato 
2012). The lowlands of Sabah have been historically covered 
by tall, structurally complex dipterocarp forests, including 
the tallest known trees ever recorded in the tropics, which 
can reach 100 m in height (Shenkin et al. 2019). However, 
since the early 1970s much of Sabah’s forests have either been 
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selectively logged and fragmented or entirely cleared to make 
way for rubber and oil palm plantations (Reynolds  et  al. 
2011, Bryan et al. 2013, Gaveau et al. 2019).

To capture this broad gradient of forest disturbances, we 
compiled data from representative sites in Sabah that encom-
pass unlogged old-growth forests, selectively logged forests at 
different stages of recovery (including ones that have been 
actively restored) and oil palm landscapes (Fig. 2). Old-
growth forests are located at Danum Valley and Maliau Basin 
conservation areas (Zhang et al. 2023), where no records of 
commercial tree harvesting exist. Logged forests are mostly 
found within the Stability of Altered Forest Ecosystems 
(SAFE) project landscape (Ewers et al. 2011), where we iden-
tified both ‘recovering logged forests’ that were selectively 
logged twice (first in the 1970s and then again in the 1980–
1990s) and have since been left to recover, and ‘recently 
logged forests’ which experienced up to four rounds of log-
ging between the 1970s and 2008. These were contrasted 
to ‘restored logged forests’ within the Sabah Biodiversity 

Experiment (SBE), where selective logging occurred once in 
the late 1980s and forests have since been actively restored via 
enrichment tree planting and liana cutting starting in 2002 
(Hector et al. 2011). In all cases, the first round of logging 
removed approximately 113 m3 ha−1 of timber, followed by 
an additional 37–66 m3 ha−1 during subsequent rotations 
(Riutta et al. 2018). In 2014 the basal area of recently logged 
forests was approximately 10 m2 ha−1, approximately half that 
of recovering logged forests and only 25–30% of old-growth 
forests (Riutta et al. 2018). Finally, given the prevalence of oil 
palm plantations across Sabah, we also included these in our 
analysis as a comparison to the canopies of natural forests. 
This includes palm groves at all stages of maturity during the 
crop’s 25–30 year rotation cycle.

Airborne laser scanning data

ALS data were acquired through multiple surveys conducted 
in 2013, 2014, 2016 and 2020 (Supporting information). 

Figure 1. Schematic diagram of the geometric constraints between height range (ΔH), surface rugosity (R) and fractal dimension (D). The 
blue lines represent a 2D cross-section of a 3D surface. In each row, one metric is kept constant between the two surfaces (outlined in red) 
to highlight the interaction between the remaining two metrics. In the top row, surfaces (a and b) share the same rugosity (the length of the 
line is the same), but the fractal dimension of (b) is greater (the surface is more folded over the same distance), meaning that its height range 
must also be lower. In the middle row, surfaces (c and d) have the same height range, but (d) has a higher fractal dimension and therefore 
the length of the line has increased, resulting in greater surface rugosity). In the bottom row, surfaces (e and f ) have the same fractal dimen-
sion, but the greater height range of (e) means that its surface rugosity is also higher.



Page 4 of 17

The majority of the analysis is based on ALS data acquired 
in 2014 by NERC-ARF (https://nerc-arf-dan.pml.ac.uk/) at 
Danum Valley, Maliau Basin and SAFE, which collectively 
covered ~ 450 km2 (Jucker et al. 2018c). Additionally, for the 
temporal analyses we used ALS data collected in 2013 and 
2020 at SBE, and in 2020 at Danum Valley by the Malaysian 
company Ground Data Solutions, as well as in 2016 at SAFE 
as part of a wider ALS campaign of Sabah conducted by the 
Global Airborne Observatory (GAO; Asner et al. 2018).

Point cloud data from each survey were processed using 
LAStools (https://rapidlasso.com/lastools). After classify-
ing the ground returns of the point cloud, a digital eleva-
tion model (DEM) was created. We then subtracted the 
elevations of non-ground points from the DEM to produce 
a normalised canopy height model (CHM) using a locally 
adaptive spike-free algorithm (Fischer and Jucker 2023, 
Fischer et al. 2024). The resolution of the CHMs was 1 m in 
all cases except for the 2016 data acquired by GAO at SAFE, 

which have a resolution of 2 m due to the lower pulse density 
(approximately 2 pulse m−2 , compared to > 10 pulses m−2 
for all other datasets). All subsequent analyses are based on 
these CHMs and were conducted in R (ver. 4.1.0; www.r-
project.org).

The geometric theory for surface habitats and its 
application to tropical forest canopies

Torres-Pulliza et al. (2020) developed a geometric theory of 
surface habitats, which defines the relationship between three 
structural metrics: height range (ΔH), surface rugosity (R) 
and fractal dimension (D). The three metrics describe varia-
tion in habitat structure across spatial scales, from an entire 
habitat patch (length L) down to grid cells of a minimum size 
(L0) within habitat patches. Together, the three metrics form 
a surface descriptor that encodes the shape and geometry of a 
3D surface based on the following equation:

Figure 2. Map of the key study sites where airborne laser scanning (ALS) data were acquired for this study and their location within the state 
of Sabah in Malaysian Borneo. Black squares indicate the locations of the 24 forest patches (each 800 × 800 m) used to explore structural 
complexity across a disturbance gradient. White squares instead correspond to the nine forest patches (each 800 × 800 m) used in the 
temporal change analyses. This included three plots known to have been salvaged logged between 2014 and 2016 (within the Stability of 
Altered Forest Ecosystems (SAFE) project landscape); three previously logged plots that were in a phase of recovery between 2013 and 2020 
when the ALS data were acquired (within the Sabah Biodiversity Experiment); and three old-growth plots in Danum Valley known to have 
been impacted by a windthrow event between 2014 and 2020.

https://nerc-arf-dan.pml.ac.uk/
https://rapidlasso.com/lastools
www.r-project.org
www.r-project.org
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Equation 1 numerically links the three surface descriptors 
together, such that the value of any one metric can be cal-
culated if the other two are known (see Torres-Pulliza et al. 
(2020) for details).

For the purposes of our analysis, we chose to set L0 at 8 
m as a compromise between the resolution of the underlying 
CHMs (1–2 m) and the desire to capture variation in height 
within individual tree crowns (see below for a sensitivity 
analysis assessing how the choice of L0 impacts the estimation 
of ΔH, R and D). Maximum habitat patch size (L) was set 
as 800 m to cover at least two orders of magnitude in scale, 
as required when estimating fractal dimension (Halley et al. 
2004).

Height range

ΔH is the difference between the highest and lowest eleva-
tion of the CHM in an entire habitat patch (L). Torres-

Pulliza et al. (2020) expressed ΔH as log10
02

�H
L

�

�
�

�

�
� , which 

includes a term for the minimum patch size, L0. As this 
parameter will differ depending on the ecosystem and the 
resolution of the data, we instead use height range calculated 
on its original scale (in m) throughout this study to improve 
interpretability.

Surface rugosity

R is defined as the surface area (A) of the entire habitat patch 
divided by its planar area (L2): R A

L
= 2 . There are multiple 

ways to estimate the surface area of a CHM. Here, we rep-
licated the approach of Torres-Pulliza  et  al. (2020), which 
sums the area of each grid square at the smallest scale (L0). 
This approach provides a lower-bound estimate of rugosity, 
as it takes the minimum possible surface area given the height 
range in the grid cell. We compared this approach to an alter-
native estimate of A derived using the surfaceArea function 
in the ‘sp’ package in R (www.r-project.org). The two mea-
sures of rugosity were tightly correlated (Pearson’s correlation 
coefficient, r = 0.98), but R estimates obtained using the sur-
faceArea function were systematically larger (60%) than those 
derived using the approach of Torres-Pulliza  et  al. (2020) 
(Supporting information).

Fractal dimension

Fractals are objects that exhibit self-similar structures across 
spatial scales, such as lines or surfaces that fold in a predict-
able way. The extent to which these structures fill space can 
be described by a fractal dimension (D) that lies between the 
classical Euclidian dimensions. D is well-defined only if the 

underlying objects are or behave like fractals and exhibit scal-
ing across several orders of magnitude, which is rare in ecology 
(Halley et al. 2004, Loke and Chisholm 2023). Nonetheless, 
to assess the theory in its entirety, we calculated D following 
the approach used by Torres-Pulliza et al. (2020). 

Specifically, D was calculated using the variation method 
(Dubuc et al. 1987), which quantifies how ΔH varies across 
spatial scales within a given surface. This involves first dividing 
a habitat patch (L) into progressively smaller squares of length 
Lx, where in our case x is a geometric sequence from 8 to 20, 
50, 128, 320 and 800 m, with a common ratio of ~ 2.5. At the 
smallest scale (x = 8 m), Lx = L0 and ΔH is calculated across 
10 000 separate patches each 8 × 8 m in size (64 pixels for a 
1 m resolution CHM). At the largest scale (x = 800 m), Lx = L 
and ΔH is calculated across the entire 800 × 800 m habitat 
patch (640 000 pixels for a 1 m resolution CHM).

We then calculated the mean ΔH observed at each of these 
x scales (��x ) and regressed it against x on a log–log scale: 
log log10 10�� � � � � � ��x x� � , where α is the intercept of 
the regression and β is the slope coefficient. From this, D can 
then be calculated as 3 − β. When ��  at the smallest scale 
(L0) is similar to that of the entire patch (L), β → 0 and D will 
be high, reflecting a high degree of space filling across spatial 
scales. Conversely, the greater the difference between ��  at 
L0 and L, the greater the value of β and therefore the smaller 
the value of D. Note that a key assumption of the height 
variation method is that �� and x should scale linearly on 
log–log axes, indicating the relationship between the two is 
scale invariant (Loke and Chisholm 2023). A deviation from 
linear scaling would indicate that a surface is in fact not a true 
fractal (Fischer and Jucker 2023).

Testing the robustness of the geometric theory of 
surface habitats

Some of the assumptions of the geometric theory of sur-
face habitats developed by Torres-Pulliza et al. (2020) have 
recently been called into question, particularly around the 
robustness and ecological interpretation of D (Loke and 
Chisholm 2022). However, the degree to which ΔH, R and 
D are sensitive to the scale of observation or the resolution 
of the underlying data has yet to be explicitly tested, which 
is critical if these metrics are to be used to compare struc-
tural complexity within and across ecosystems using different 
sources of 3D data. 

We therefore devised a number of sensitivity analyses to 
assess the robustness of ΔH, R and D. First, we selected three 
large patches (2000 × 2000 m) of relatively homogeneous 
habitat in the 2014 CHMs from SAFE and Danum Valley 
– an old-growth forest, a selectively logged forest and an oil 
palm plantation – and used these data to test how each metric 
was impacted by:

1) The number of patch divisions across which height varia-
tion is calculated (hereafter referred to as the number of 

www.r-project.org
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scales), which we varied from 3 to 10 while keeping the 
smallest scale (L0) = 20 m and the largest scale (L) = 2000 
m (i.e. 2 orders of magnitude difference).

2) The range of scales across which metrics were calculated 
(i.e. the difference between L0 and L, which we increased 
progressively from 1 to 3 orders of magnitude by reducing 
L0 from 200 m to 2 m while keeping L = 2000 m and the 
number of scales = 6).

3) The smallest scale extent, which we varied from L0 = 2 to 
20 m while keeping the number of scales as 6 and the 
range of scales fixed at 2 orders of magnitude by increasing 
L from 200 to 2000 m.

Using these same data, we also tested the underlying 
assumptions of D. Specifically, we visually checked if ��x  
scaled linearly with x on log–log axes or if instead it deviates 
from this pattern, which would indicate that canopies are not 
fractal.

Next, we used the 2014 data from SAFE and Danum 
Valley, which span a gradient from old-growth forests to oil 
palm plantations, to quantify how sensitive ΔH, R and D are 
to specific properties of the CHM. This includes the resolu-
tion of the data, for which we compared CHMs generated at 
1 m versus 2 m resolution, as well as the presence of extreme 
height values (e.g. those caused by remnant trees in oil palm 
landscapes and possible noise in the ALS point cloud data).

Comparing ΔH, R and D with other metrics of 
canopy structure

To better understand how ΔH, R and D relate not just to 
each other but also to other widely used metrics of canopy 
3D structure, we used the 2014 ALS data from SAFE and 
Danum Valley to derive a series of measures relating to can-
opy height, density and openness (Supporting information). 
Measures of canopy height included mean canopy height, 
maximum canopy height (99th percentile of the CHM) and 
the coefficient of variation of canopy height. These height 
metrics directly reflect variation in aboveground biomass and 
understory microclimate across human-modified tropical 
landscapes (Asner and Mascaro 2014, Jucker  et  al. 2018a). 
To capture canopy density we calculated the plant area index 
(PAI), which is a measure of plant area (i.e. leaves, branches 
and stems) per unit ground area. PAI values derived from 
ALS have been shown to correlate closely with aboveground 
woody biomass stocks and productivity in tropical forests 
(Milodowski et al. 2021, Wieczynski et al. 2022). Finally, to 
measure canopy openness, we calculated the total gap frac-
tion and the number of gaps in the canopy, which reflect the 
legacy of past disturbance in these ecosystems (Jucker 2022, 
Reis et al. 2022, Zhang et al. 2023). Gaps were defined as 
openings in the canopy that extend to 2 m above the forest 
floor and that are at least 9 m2 in size.

All metrics were calculated at 800 × 800 m scale to match 
ΔH, R and D. CHMs typically contain a small percentage of 
missing values (~ 1% in our case), due to things like low ALS 
scanning densities, atmospheric scattering and the presence 

of water bodies. To avoid these having an undue effect on our 
results, prior to the analysis we removed forest patches where 
missing values made up > 10% of CHM pixels (4.2% of 800 
× 800 m patches). Additionally, we removed seven patches 
where ΔH > 100 m, as this exceeds the height of the tallest 
known tree in the region and therefore likely reflects artefacts 
in the CHM. This left us with 539 habitat patches of 800 × 
800 m for the analysis (equivalent to 345 km2). 

Characterizing the impacts of logging on canopy 
structural complexity

To quantify the impacts of logging and forest degradation on 
canopy structural complexity, we used a space-for-time sub-
stitution to compare ΔH, R and D among forest patches sub-
jected to varying degrees of human disturbance. To do this, 
we began by using the 2014 CHM data to select 24 landscape 
patches (each 800 × 800 m in size, black squares in Fig. 2) 
that were representative of the habitat classes described previ-
ously: six old-growth forest plots (three at Danum Valley and 
three at Maliau Basin), six recovering logged forest plots, six 
recently logged forest plots, as well as six oil palm plantation 
plots (three each in mature and young oil palm). We then 
used one-way ANOVAs to compare values of ΔH, R and D 
between plots in each habitat type.

To complement this targeted approach, we also used the 
CHMs from SAFE and Danum Valley to explore how ΔH, R 
and D vary across the broader landscape (539 forest patches 
described above). Each forest patch was classified as either ‘for-
est’ (including both old-growth and logged forests) or ‘non-for-
est’ (including oil palm and heavily degraded scrub vegetation) 
using an existing habitat map of the study area (Swinfield et al. 
2020) and we used t-tests to compare mean values of ΔH, R 
and D between these two broad habitat classes.

Tracking shifts in canopy structural complexity 
through time

To capture shorter-term temporal changes in canopy struc-
tural complexity driven by both disturbance and recovery pro-
cesses, we used repeat ALS data acquired at SAFE, SBE and 
Danum (Fig. 3). The SAFE landscape provided an opportu-
nity to examine the impacts of salvage logging on ΔH, R and 
D. Between the 2014 and 2016 ALS surveys, portions of the 
SAFE landscape that had been earmarked for future conver-
sion to oil palm were salvage logged to extract all remaining 
merchandisable timber prior to establishing the plantations. 
By comparing ΔH, R and D just before and after salvage log-
ging, we were able to capture the immediate effects of this 
extreme human disturbance on habitat 3D structure. SBE 
instead allowed us to test how canopy structural complexity 
recovers when selectively logged forests are actively restored, 
which we did by tracking changes in ΔH, R and D between 
2013 and 2020 to give a snapshot of forest recovery through 
this period. Finally, in addition to these human-modified 
landscapes, we quantified changes in the structural complex-
ity of old-growth forests impacted by natural disturbance. 
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For this we used the 2014 and 2020 data from Danum 
Valley to test how ΔH, R and D were impacted by a localised 
windthrow event that occurred in 2017 and brought down 
several large, canopy-dominant trees in the area.

Within each of the three sites, we established three 800 × 
800 m plots within the area of overlapping ALS data (white 
squares in Fig. 2) and used these to calculate changes in ΔH, R 
and D over time. These small sample sizes are due to the rela-
tively limited degree of overlap between ALS surveys. Because 

of this, observed differences between the two time periods 
were compared in qualitative terms rather than using formal 
statistical tests. Note also that the 2016 CHM from SAFE was 
generated at 2 m resolution, instead of 1 m like in all other 
cases. To ensure ΔH, R and D values were directly compa-
rable between the two surveys, we applied a correction factor 
to the 2016 data which we developed by comparing 1 m and 
2 m resolution CHMs generated using the 2014 data (see the 
Supporting information and Results section for details).

Figure 3. Representative examples of temporal changes in the canopy height models (CHM) of old-growth forests (Danum Valley, left), 
restored logged forest (Sabah Biodiversity Experiment, middle) and salvage logged forests (Stability of Altered Forest Ecosystems, SAFE 
project, right). Each tile corresponds to an area 300 × 300 m in size. The top row of panels shows the CHM at the first time point, while 
the middle row is the second period (dates indicated in each panel). The bottom row of panels shows the difference in height between the 
two acquisitions, with pink denoting areas of height loss and green showing areas of height gain.
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Results

Robustness of ΔH, R and D

Of the three structural metrics put forward by Torres-
Pulliza et al. (2020) in their geometric theory of surface habi-
tats, only ΔH proved robust to changes in the spatial extent and 
scale across which it was calculated (Fig. 4), as well as the reso-
lution of the CHM (Supporting information). Predictably, we 
did find that removing extreme height values (top 1%) from 
the CHM caused ΔH to shrink by 14 m (24%) on average, 
but relative differences in ΔH among habitat types were unaf-
fected by this (correlation between ΔH before and after the 
removal of extreme values = 0.93; Supporting information).

By contrast, both R and D varied considerably when we 
changed the spatial extent and range of scales across which 
they were calculated (Fig. 4). Specifically, D decreased by 
8.8% when we increased the range of scales across which it 
was calculated from 1 to 3 orders of magnitude (Fig. 4d), and 
instead increased by 15% when we increased the minimum 
scale (L0) from 2 to 20 m (Fig. 4f ). Meanwhile, R increased 
by 35.2% when we increased the range of scales from 1 to 3 
orders of magnitude (Fig. 4g) and decreased by 8.4% when 
we increased L0 from 4 to 20 m (Fig. 4i). Beyond this (L0 > 
20 m), R was severely underestimated, with values approach-
ing 1 (i.e. canopy surface area = ground area; Fig. 4g). 
These shifts in D and R were observed in all three habitat 
types (although to a lesser degree in the oil palm landscape 

Figure 4. Sensitivity analyses to test the effect of scaling range (orders of magnitude), number of scales and smallest scale linear extent (L0) 
on each of the three surface descriptors that make up the geometric theory for surface habitats. Vertical grey lines indicate the parameters 
used elsewhere in this study.
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compared to old-growth and selectively logged forests) and 
were similar in magnitude to the differences between habitats 
observed for the default set of parameters used in subsequent 
analyses (vertical grey lines in Fig. 4).

D was also sensitive to the removal of extreme height val-
ues, while R was not. Removing the top 1% of height values 
caused D to increase by 2.6% on average (Supporting infor-
mation). However, these shifts were not consistent across 
habitat, being greatest in recently logged forests (3.9%) and 
oil palm (3.5%) and then progressively smaller in recover-
ing (2.4%) and old-growth forests (0.6%) – meaning that D 
estimates calculated before and after the removal of extreme 
values were only weakly correlated with each other (r = 0.5, 
p = 0.01). To a lesser degree, D was also sensitive to the reso-
lution of the CHM (Supporting information), although in 
this case D estimates calculated using 1 m and 2 m resolu-
tion CHMs were tightly correlated (r = 0.94). Finally, we 
also found that ��  did not scale linearly with x on log–log 

scales, especially in old-growth canopies (Supporting infor-
mation). Instead, ��  decreased slowly across a broad range 
of spatial scales (100–2000 m), before then declining rapidly 
at the smallest scales (20–50 m), indicating that ��  is not 
scale invariant and that forest canopies are not true fractals.

Relationship between ΔH, R and D and other 
metrics of canopy structure

Across the 539 habitat patches at SAFE and Danum Valley 
that include everything from old-growth forests to oil palm 
plantations, we found that R was strongly positively correlated 
with both D (r = 0.66; Fig. 5a) and ΔH (r = 0.75; Fig. 5b). 
By contrast, D and ΔH were only weakly correlated with one 
another (r = 0.18; Fig. 5c). When we compared ΔH, R and 
D to other metrics of canopy structure (Supporting informa-
tion), we found that ΔH and R increased as forest canopies 
became taller, as both were strongly positively correlated with 

Figure 5. Structural complexity of a tropical forest landscape along a forest disturbance gradient. Pearson’s correlation coefficients (r) for the 
pairwise relationships between each of the three surface descriptors are reported in panels (a)–(c). Points are coloured according to their 
proportion of forest versus non-forest pixels over a contiguous grid of 800 × 800 m forest patches (n = 539) covering a mixed landscape. In 
panels (d–f ), plots representing a single category within the disturbance gradient are overlaid onto the mixed landscape points in grey. 
Canopy height models (g) for each of the forest categories show canopy height captured by airborne laser scanning.
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mean canopy height (ΔH: r = 0.70; R: r = 0.90) and maxi-
mum height (ΔH: r = 0.87; R: r = 0.91). The same picture 
emerged for PAI, which itself was strongly correlated to mean 
canopy height (r = 0.98). D was instead strongly negatively 
associated with both the coefficient of variation of height 
(r = −0.85) and with gap fraction (r = −0.83), peaking in 
forest patches with spatially homogenous canopy height and 
cover. Meanwhile, none of the above metrics was strongly 
correlated with the number of canopy gaps (|r| < 0.40 in all 
cases; Supporting information), which emerged as an inde-
pendent axis of variation of canopy structure.

Characterising the impacts of logging on canopy 
structural complexity

When calculating ΔH, R and D using our default param-
eters (L0 = 8 m; range of scales = 2 orders of magnitude; num-
ber of scales = 6), we found that together the three metrics 
were able to tease apart some but not all differences between 
major habitat classes (Fig. 5d–f ). Specifically, we found clear, 
significant differences in ΔH and R between old-growth 
forests (ΔH = 83 m; R = 2.4), logged forests (ΔH = 65 m; 
R = 1.6) and oil palm plantations (ΔH = 19.5 m; R = 1.1), 
with mean values of both metrics decreasing progressively 
along this gradient of forest degradation and conversion 
(Fig. 5e, Supporting information). However, neither metric 
was able to distinguish between recovering (ΔH = 65.2 m; 
R = 1.7) and recently logged forests (ΔH = 64.8 m; R = 1.6), 
nor between young (ΔH = 19.3 m; R = 1.1) and mature oil 
palm plantations (ΔH = 19.8 m; R = 1.2), despite clearly vis-
ible differences in their CHMs (Fig. 5g). D was statistically 
indistinguishable between any of the habitat classes (Fig. 5d, 
Supporting information). Mean D values decreased when 
transitioning from old-growth (2.76) to logged forests (2.69), 
but then increased again in oil palm plantations (2.73), which 
also exhibited the greatest range of D estimates (2.49–2.81).

When characterising variation in ΔH, R and D across the 
broader landscape, we found that both ΔH and R (mean ± 
1SD) were significantly greater in forest (ΔH = 67.0 ± 13.9 
m; R = 1.68 ± 0.37) than non-forest habitats (ΔH = 42.0 ± 
15.8 m; R = 1.16 ± 0.09; p < 0.001 in both cases; Fig. 5b). 
D was also marginally higher in forests (2.67 ± 0.08 versus 
2.61 ± 0.11), but while this difference was statically signifi-
cant (p < 0.001) we observed almost complete overlap in the 
range of D values in these two broad habitat classes (Fig. 5c). 
Moreover, we found that relationships between D and both 
ΔH and R were notably different in habitat patches classi-
fied as forest and non-forest (Fig. 5a–c). In forest patches R 
and D were tightly coupled, with high D values only found 
in areas with high R (green points in Fig. 5a). By contrast, 
in non-forest patches we observed a wide range of D values 
despite little or no variation in R, which was consistently low 
(tan points in Fig. 5a). Similarly, in forests we found that 
D was positively (albeit weakly) correlated with ΔH (green 
points in Fig. 5c; r = 0.48, p < 0.001), but the opposite was 
true for non-forest patches (tan points in Fig. 5c; r = −0.65, 
p < 0.001).

Tracking shifts in canopy structural complexity 
through time

When tracking changes in ΔH, R and D over time at SAFE, 
SBE and Danum Valley, we found clear and distinct direc-
tional shifts that reflected the disturbance and recovery 
processes that characterise each site (Fig. 6). At SAFE, we 
found that forests subjected to salvage logging showed a shift 
towards lower values of ΔH, R and D (Fig. 6h–j), consistent 
with the targeted removal of remnant trees (Fig. 3). At SBE, 
we instead observed that both R and D increased in unison 
over the 7-year period of recovery from logging, while ΔH 
remained constant (Fig. 6e–g). This pattern was driven by a 
combination of rapid gap closure, progressive canopy height 
growth and a limited number of new canopy gap openings 
occurring during this initial regeneration phase (Fig. 3). A 
similar pattern emerged for old-growth forests at Danum 
Valley impacted by a windthrow in 2017 (Fig. 6b–d), where 
the formation of new canopy gaps caused by the mortality of 
large trees led to an increase in both R and D (Fig. 3).

Discussion

Using a framework initially developed for characterising the 
surface complexity of coral reefs, we tested whether three 
structural features of tropical rainforest canopies – their 
height range, rugosity and fractal dimension – can capture 
their past disturbance history and predict their subsequent 
recovery trajectories. We found that together, these three 
metrics of surface complexity captured major transitions 
in canopy 3D structure between highly degraded, selec-
tively logged and old-growth forests (Fig. 5). Moreover, they 
were able to detect distinct temporal patterns of structural 
change following disturbances from logging and windthrows 
(Fig. 6). However, we also uncovered several important limi-
tations with the geometric framework of habitat complexity 
(Fig. 4). Here we explore the key insights gained from apply-
ing this framework to a new ecosystem, before charting a way 
forward for characterising forest structural complexity in a 
robust and ecologically intuitive way.

Tracking changes in tropical forest canopy structural 
complexity through space and time

Height range (ΔH) at the patch scale (800 × 800 m) emerged 
as a key structural axis separating out habitat types along the 
disturbance gradient (Fig. 5). At this spatial scale, ΔH is a 
proxy for maximum tree height (r = 0.87). This is because 
forest canopies are ‘porous’ and replete with gaps (Fig. 5g), 
meaning that if we search over a large enough area (typically 
> 1 ha; Zhang  et  al. 2023) the minimum canopy height 
will always be close to ground level, irrespective of the dis-
turbance history. Given that variation in ΔH can be inter-
preted in terms of differences in maximum tree height, our 
results highlight the ‘fast out, slow in’ nature of disturbances 
such as logging or large windthrows (Chambers et al. 2013, 
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Figure 6. Change in structural complexity over time in wind-disturbed old-growth forest (b–d); in forests recovering from logging (e–g); 
and in actively logged forests being converted to oil palm plantation (h–j). Time series pairs are plotted in relation to the variation in struc-
tural complexity exhibited at the landscape level (a). SAFE, Stability of Altered Forest Ecosystems; SBE, Sabah Biodiversity Experiment.
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Lutz et al. 2018, Poorter et al. 2021). By removing the largest 
trees, these severe disturbances cause an almost instantaneous 
drop in aboveground biomass, while the subsequent recovery 
of structural attributes linked to the presence of large trees 
can take decades or even centuries (Poorter et al. 2021).

The fact that we detected a clear difference in ΔH between 
old-growth and logged forests at the patch scale illustrates 
how selective logging removes almost all large trees from the 
landscape (Fig. 5g). However, we did not find a clear differ-
ence in ΔH between recently logged and recovering forests, 
even though these vary noticeably in both their 3D structure 
and dynamics (Riutta et al. 2018, Milodowski et al. 2021, 
Scheeres et al. 2023). The reason for this seems to be in the 
relatively coarse scale of observation (i.e. 800 × 800 m): two 
forest patches could have very different tree size structures, 
but as long they contain just a handful of remnant large trees 
and canopy gaps (which is almost inevitable at this scale; see 
Fig. 5g), they will have very similar ΔH values. However, 
this finding also points to a more fundamental difference in 
the way processes like mortality and growth of individuals 
impact structural complexity metrics such as ΔH in ecosys-
tems like coral reefs and forests. When a coral dies, its skele-
tal structure becomes a substrate upon which new corals can 
grow (Bozec et al. 2015). Instead, in forests the maximum 
height of the canopy is shaped by the environmental condi-
tions in which trees grow (Zhang et al. 2016, Gorgens et al. 
2021, Jucker et al. 2022), while tree mortality creates empty 
space in the form of canopy gaps (Jucker 2022), both of 
which constrain variation in ΔH across spatial scales (Fischer 
and Jucker 2023).

This variation in ΔH across spatial scales is what ulti-
mately determines the fractal dimension (D) of the canopy, 
which emerged as an independent axis of variation in struc-
tural complexity from canopy height (Fig. 5c). Our analysis 
confirmed previous findings that forest canopies are not true 
fractals beyond the scale of the individual tree (Fischer and 
Jucker 2023). Nonetheless, exploring how ΔH varies across 
spatial scales using fractal dimension as an index allowed us 
to detect major differences in the structure of forest and non-
forest habitats (the latter corresponding to highly degraded 
scrub vegetation and oil palm plantations). In forests, we 
found that D increased progressively when going from 
recently logged to old-growth forests. This reflects the fact 
that in heavily disturbed forests ΔH is much more variable 
across the landscape due to the scattered presence of remnant 
large trees (Fig. 5g, Supporting information). This causes a 
greater difference in mean ΔH between the smallest (8 × 8 
m) and largest scale of observation (800 × 800 m), which in 
turn leads to a lower estimate of D.

By contrast, we instead found that fractal dimension 
increased when transitioning from forest to non-forest habi-
tats, peaking in oil palm plantations. This may seem counter-
intuitive if we associate fractal dimension with ‘complexity’, 
but makes perfect sense if we consider that oil palm plan-
tations consist of an even-aged monoculture planted in a 
regular grid structure. This inevitably causes ΔH to be very 
similar across scales (low coefficient of variation in height; 

Supporting information), resulting in high values of D. In 
this regard, D can be thought of as a measure of homogeneity 
across scales, which may not necessarily conform with our a 
priori expectations of what constitutes a ‘complex’ ecosystem.

From a temporal perspective, we were able to capture the 
structural transition between forest and non-forest habitats in 
areas of the SAFE landscape that were salvage logged prior to 
conversion to oil palm (Fig. 6). Specifically, salvage logging led 
to a coordinated decline in height range, rugosity and fractal 
dimension, shifting what were previously logged forests into 
a new, highly degraded structural state. By contrast, when we 
compare the temporal trajectories of restored forests recover-
ing from logging disturbance and old-growth forests impacted 
by a windthrow event, we observed something unexpected. 
Specifically, these two very different processes (recovery and 
disturbance) resulted in the same pattern of change: a coordi-
nated increase in both fractal dimension and rugosity, accom-
panied by little or no change in height range (Fig. 6). 

At SBE, where forests canopies are recovering from log-
ging in the late 1980s, this pattern reflects a general trend 
toward rapid gap closure, progressive canopy height growth 
and a limited number of new canopy gap openings occur-
ring during this initial regeneration phase (Zhang et al. 2023; 
Fig. 3). This led to an overall increase in the height of the 
canopy (which causes rugosity to increase; Fig. 1), but not in 
an increase in ΔH over the short term. This is because most of 
the rapid regrowth occurs within gaps, not in the tall remnant 
emergent trees. This pattern of gap filling also explains why 
we observed an increase in fractal dimension over time, as it 
reduces the spatial variability in ΔH over the landscape caused 
by logging – slowly erasing the fingerprint of logging distur-
bance that we observed when comparing recently logged and 
recovering forests (Fig. 5, Supporting information).

In the old-growth forests of Danum Valley, the opposite 
process – gap formation following a windthrow event – led to 
the same pattern of increasing rugosity and fractal dimension. 
In this system, where maximum canopy height has reached 
a quasi-equilibrium, the formation of new gaps resulting 
from the mortality of large emergent trees leads to localised 
increases in height variation (Fig. 3). This in turn increases 
both rugosity and fractal dimension (middle panel of Fig. 1). 
However, at the whole patch scale (800 × 800 m) ΔH is unaf-
fected by this type of windthrow disturbance, as only some 
of the emergent trees are brought down, leaving maximum 
canopy height effectively unchanged. This highlights a major 
difference in the way natural disturbances impact canopy 3D 
structure compared to selective logging, which by system-
atically targeting large trees can reduce ΔH even across large 
spatial scales (Okuda  et  al. 2003, Rutishauser  et  al. 2016, 
Milodowski et al. 2021).

A general framework for characterising structural 
complexity across ecosystems: holy grail or 
poisoned chalice?

If we were to list some of the features that we would want 
from a set of structural metrics designed to characterise 
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habitat structural complexity, three key aspects seem particu-
larly important. First, these metrics should be both intuitive 
to interpret and ecologically meaningful (e.g. ones directly 
related to habitat diversity and microclimate). Second, they 
should be complementary to each other, capturing indepen-
dent facets of ecosystem 3D structure and dynamics. And 
third, they should be computationally simple and robust to 
calculate. Together, these features can provide a framework 
that is widely applicable across ecosystems and data inputs, 
while also limiting their misuse.

When we assess the geometric theory of surface habitats 
against these criteria, a number of potential issues emerge. 
First, our analysis confirmed previous findings that can-
opy surfaces deviate substantially from fractality (Loke and 
Chisholm 2022, Fischer and Jucker 2023). This calls into 
question whether we should be calculating fractal dimension 
when we know these theoretical assumptions are violated. 
More generally, it raises the issue of how to interpret values 
of D from an ecological perspective. In their paper, Torres-
Pulliza et al. (2020) interpret D as a measure of niche diversity, 
and hypothesise that habitats with higher D should harbour 
greater species diversity. But, as our analysis clearly shows, D 
is actually a measure of homogeneity in height variation across 
scales. Consequently, when applied to human-modified tropi-
cal forests, D peaked in oil palm plantations – the most highly 
transformed and least biodiverse habitat considered in our 
analysis (Malhi et al. 2022, Zemp et al. 2023).

Even more concerning is how sensitive D was to even 
small changes in the underlying data (e.g. the range of scales 
across which it was calculated, the smallest scale extent and 
the removal of extreme CHM values; Fig. 4, Supporting 
information). The choices we made when calculating D 
had a major impact on our estimates of fractal dimension, 
suggesting that values of D are not comparable within and 
across ecosystems. To avoid the conceptual, theoretical and 
methodological limitations of D, one could instead calcu-
late a much simpler alternative metric: the percent change 
in average height variation between the smallest and largest 
scales (Fischer and Jucker 2023). This has the advantage of 
being more easily interpretable and overcomes the need to 
assume scale-invariance, while still capturing how height 
variation changes across spatial scales (Atkins et al. 2023b). 
Alternatively, our analysis suggests that the coefficient of vari-
ation of the CHM was strongly negatively correlated with D 
(r = −0.85), providing another robust and intuitive solution 
to measuring spatial heterogeneity of surface heights.

While height range and rugosity were generally less prob-
lematic than fractal dimension, they also presented several 
issues. First, these two metrics are strongly positively correlated 
and therefore do not capture independent axes of variation in 
canopy structure (Fig. 5b). This is an inevitable consequence 
of the way rugosity is calculated, as any increases in canopy 
height will also increase canopy surface area (Fig. 1). An obvi-
ous solution would be to scale rugosity by canopy height, 
calculating a normalised rumple index (Fischer and Jucker 
2023). A second issue is that ΔH calculated at 800 × 800 
m was only of limited use when attempting to characterise 

disturbance and recovery processes. This is because only the 
most severe disturbances (e.g. systematic selective logging 
and conversion to oil palm) remove all large trees at this 
scale. A better way to capture differences in canopy height 
structure at these large scales would be using mean canopy 
height. Alternatively, if wanting to retain a measure of maxi-
mum canopy height, we suggest calculating it at finer spatial 
grains (e.g. reducing the maximum patch size to 200 × 200 
m led to much clearer differences in ΔH between logged and 
old-growth forests; Fig. 4c).

Taken together, our findings suggest that ecosystem-spe-
cific approaches to characterising habitat structural com-
plexity are likely to prove more fruitful than efforts to draw 
cross-ecosystem comparison such as those envisioned by 
Torres-Pulliza et al. (2020). When it comes to characterising 
the 3D structure of forest canopies using ALS, there are sev-
eral practical steps one could take to improve robustness and 
ecological relevance. First, in terms of selecting which struc-
tural metrics to use, it is important to be aware that some 
metrics are considerably more sensitive to ALS acquisition 
parameters than others. For instance, CHM-derived metrics 
tend to be much more comparable across ALS platforms than 
ones calculated directly from point cloud data (Zhang et al. 
2024). But even among CHM-derived metrics there can be 
considerable differences, with metrics designed to measure 
canopy openness and heterogeneity being more sensitive to 
features such as point density and scan angle compared to 
height metrics (Fischer et al. 2024, Zhang et al. 2024). Recent 
work from dry forests suggests that a combination of mean 
and maximum height, coefficient of variation of height, gap 
fraction and normalised rumple index (all calculated from a 
CHM) are more than sufficient to capture the spectrum of 
canopy structural types observed across the landscape, while 
also being computationally robust (Zhang et al. 2024).

Another key aspect to consider is the spatial grain at which 
metrics are calculated (Atkins et al. 2023b). As discussed pre-
viously, metrics such as maximum height may be of limited 
use in detecting disturbance when calculated at coarse spatial 
grains (> 4 ha), as these exceed the average size of the distur-
bance events themselves. Mean canopy height or gap fraction 
will generally be more informative at these scales, as they are 
less affected by outliers. However, if we increased the spatial 
scale too much (> 10 ha), we may miss important underlying 
gradients in forest structure that unfold over short distances, 
such as those associated with topography (Jucker et al. 2018b, 
Muscarella  et  al. 2020). By contrast, metrics capturing the 
spatial organization of canopy elements – such as the number 
and size distribution of gaps – are inherently challenging to 
quantify robustly at small or intermediate spatial grains (< 
50–100 ha) due to small sample sizes (Zhang et al. 2023).

Finally, an important but often overlooked component 
is the CHM itself and the approach used to generate it. 
Recent work has shown that applying different CHM algo-
rithms to the same ALS data can result in big differences in 
height estimates (as much as 10 m), and even bigger discrep-
ancies in the retrieval of canopy gaps (Fischer et al. 2024). 
This presents a real challenge when attempting to combine 
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and compare CHMs, especially when tracking changes over 
time and when comparing datasets with large differences in 
pulse densities. To mitigate these biases, it is important to use 
CHM algorithms that are stable to difference in ALS data 
quality, such as the locally adaptive spike-free routine used 
here (Fischer  et  al. 2024). We also recommend comparing 
results derived from multiple different CHM algorithms and 
reporting sufficient details on which were used.

Forests are more than just their surfaces

Our ability to generate accurate 3D representations of 
real-world ecosystems has improved dramatically in recent 
years, leading to a growing interest in developing general 
approaches for quantifying habitat structural complexity that 
can be applied across ecosystems and at scale (Calders et al. 
2020, Torres-Pulliza  et  al. 2020, Valbuena  et  al. 2020, 
Ehbrecht  et  al. 2021, LaRue  et  al. 2023). Surface proper-
ties of forest canopies, like those presented here, show great 
promise for understanding how environmental conditions 
drive variation in canopy structure (Jucker  et  al. 2018b, 
Gorgens et al. 2021), for monitoring disturbance and recov-
ery processes (Ordway and Asner 2020, Reis  et  al. 2022, 
Choi et al. 2023) and can even serve as early warning signals 
of ecosystem change (Veldhuis et al. 2022, Kéfi et al. 2024). 
However, striving for a general, cross-ecosystem approach 
to characterising structural complexity might not always be 
practical or advisable. For instance, there may be features 
or processes that are unique to a particular ecosystem, and 
therefore require more tailored solutions. A perfect example 
is the difference between the hard, mostly filled surface of 
a coral reef and the highly porous, multi-layered canopy of 
a forest. In the latter, accounting for the size, number and 
spatial distribution of empty spaces (gaps) becomes much 
more important (Jucker 2022, Reis et al. 2022), as does cap-
turing the vertical arrangement of leaves, branches and tree 
crowns (Milodowski et al. 2021, Scheeres et al. 2023). For 
instance, two forests could have very similar surface prop-
erties (e.g. height, rugosity), but very different approaches 
to space filling (e.g. different size distribution of individual 
trees, leaf vertical profiles or total leaf area). When striving for 
generality we must take care not to miss the subtle but crucial 
details that can help us understand the processes that shape 
the structure and dynamics of ecosystems, and how these are 
responding to global change.
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