13 research outputs found

    Estudio de viabilidad de la Virtualización de Servidores aplicada al Ministerio de Relaciones Exteriores de Nicaragua (MINREX), Managua 2012.

    No full text
    modernización del mundo empresarial [1], la virtualización de los sistemas informáticos se usa para paliar y en muchos casos eliminar la infra-utilización de servidores. Ante estas nuevas tendencias y con el objetivo de estar a la vanguardia en el MINREX se está pensando en la virtualización de los servicios de red que ofrece, para paliar la falta de recursos hardware que enfrenta actualmente; sin embargo, antes de proceder a esta virtualización se hace necesario un estudio para obtener información sobre la viabilidad de este proceso; lográndose identicar las principales barreras que enfrenta la virtualización, así como también el software más apropiado para llevar a cabo este proceso. El tipo de investigación que se realizó fue un estudio explorativo de corte transversal, donde se logró identicar como principales barreras al proceso de virtualización el costo inicial y la falta de personal calicado, sin embargo los factores más determinantes para llevar a cabo este proceso son: ahorro en recursos hardware, minimización del consumo energético y mayor eciencia operativa, siendo los software más adecuado de implementación VMWare y VirtualBox [9]

    Electrostatic Conjugation of Nanoparticle Surfaces with Functional Peptide Motifs

    No full text
    Copyright © 2020 American Chemical Society. We report the surface functionalization of anionic layer by layer nanoparticles (LbL NPs) with cationic tumor-penetrating peptides (TPPs) via electrostatic adsorption while retaining particle stability and charge characteristics. This strategy eliminates the need for structural modifications of the peptide and enables facile functionalization of surface chemistries difficult to modify or inaccessible via covalent conjugation strategies. We show that both carboxylated and sulfated LbL NPs are able to accommodate linear and cyclic TPPs and used fluorescence-based detection assays to quantify peptide loading per NP. We also demonstrate that TPP activity is retained upon adsorption, implying sufficient numbers of peptides take on the appropriate surface orientation, enabling efficient uptake of functionalized NPs in vitro, as characterized via flow cytometry and deconvolution microscopy. Overall, we believe that this strategy will serve as a broadly applicable approach to impart electrostatically assembled NPs with bioactive peptide motifs

    Electrostatic Conjugation of Nanoparticle Surfaces with Functional Peptide Motifs

    No full text
    Copyright © 2020 American Chemical Society. We report the surface functionalization of anionic layer by layer nanoparticles (LbL NPs) with cationic tumor-penetrating peptides (TPPs) via electrostatic adsorption while retaining particle stability and charge characteristics. This strategy eliminates the need for structural modifications of the peptide and enables facile functionalization of surface chemistries difficult to modify or inaccessible via covalent conjugation strategies. We show that both carboxylated and sulfated LbL NPs are able to accommodate linear and cyclic TPPs and used fluorescence-based detection assays to quantify peptide loading per NP. We also demonstrate that TPP activity is retained upon adsorption, implying sufficient numbers of peptides take on the appropriate surface orientation, enabling efficient uptake of functionalized NPs in vitro, as characterized via flow cytometry and deconvolution microscopy. Overall, we believe that this strategy will serve as a broadly applicable approach to impart electrostatically assembled NPs with bioactive peptide motifs

    Oxidation enhances human serum albumin thermal stability and changes the routes of amyloid fibril formation.

    Get PDF
    Oxidative damages are linked to several aging-related diseases and are among the chemical pathways determining protein degradation. Specifically, interplay of oxidative stress and protein aggregation is recognized to have a link to the loss of cellular function in pathologies like Alzheimer's and Parkinson's diseases. Interaction between protein and reactive oxygen species may indeed induce small changes in protein structure and lead to the inhibition/modification of protein aggregation process, potentially determining the formation of species with different inherent toxicity. Understanding the temperate relationship between these events can be of utmost importance in unraveling the molecular basis of neurodegeneration. In this work, we investigated the effect of hydrogen peroxide oxidation on Human Serum Albumin (HSA) structure, thermal stability and aggregation properties. In the selected conditions, HSA forms fibrillar aggregates, while the oxidized protein undergoes aggregation via new routes involving, in different extents, specific domains of the molecule. Minute variations due to oxidation of single residues affect HSA tertiary structure leading to protein compaction, increased thermal stability, and reduced association propensity

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore