182 research outputs found

    Anticonvulsant and sedative effect of Fufang Changniu pills and probable mechanism of action in mice

    Get PDF
    Purpose: To investigate the anticonvulsant and sedative effects of Fufang Changniu Pills (FCP) and its probable mechanism of action in mice.Methods: The water decoction of FCP was prepared and the main constituents were determined by high performance liquid chromatography (HPLC). The anticonvulsant activities of FCP were evaluated by maximal electroshock (MES) and  pentylenetetrazole (PTZ)-induced seizures in mice. Pentobarbital sodium-induced sleeping time and locomotor activity measurements were performed to evaluate the sedative effects of FCP in mice. Finally, PTZ-induced chronic seizures were  established, and expressions of gamma-aminobutyric acid A receptor (GABA-A) and glutamic acid decarboxylase 65 (GAD65) in the brains of the mice were assayed by western blot in order to explore the probable mechanisms of action of the drug.Results: Gallic acid, liquiritin, cinnamyl alcohol, cinnamic acid and glycyrrhizic acid were detected in FCP decoction. FCP (50, 100 and 200 mg/kg) showed significant anticonvulsant and sedative effects on epileptic mice induced by MES (p < 0.05) and PTZ (p < 0.05). Moreover, pentobarbital sodium-induced sleeping time and  locomotor activity tests showed that FCP possesses sedative effect (p < 0.05). Western blot data indicate that FCP significantly up-regulated GABA-A and GAD 65 in the brains of chronic epileptic rats (p < 0.05).Conclusion: FCP has significant anticonvulsant and sedative effects, and the  mechanism of its action may be related to the up-regulation of GABA-A and GAD 65 in mice brain.Keywords: Epilepsy, Fufang Changniu pills, Anticonvulsant, Sedative effect,  Gamma-aminobutyric acid, Glutamate dehydrogenas

    Value of a novel Y-Z magnetic totally implantable venous access port in improving the success rate of one-time needle insertion

    Get PDF
    Background and objectivesA totally implantable venous access port (TIVAP) is a commonly used intravenous infusion device for patients receiving chemotherapy or long-term infusion therapy. To improve the success rate of one-time insertion of the Huber needle, we developed a novel Y-Z magnetic TIVAP (Y-Z MTIVAP), which we produced using three-dimensional printing technology.Materials and methodsThe Y-Z MTIVAP includes a magnetic port body and a magnetic positioning device. For testing, we established four venous port implantation models using the two types of TIVAPs and two implantation depth ranges (≤5 mm and >5 mm). Twenty nurses performed Huber needle puncture with the four models, and we recorded the number of attempts required for successful needle insertion, the operation time, and the operator's satisfaction.ResultsThe success rate for one-time needle insertion with the Y-Z MTIVAP was significantly higher than that with the traditional TIVAP at either depth range (100% vs. 75% at ≤5 mm, p = 0.047; 95% vs. 35% at >5 mm, p < 0.001). With increasing implantation depth, the success rate for one-time insertion was significantly reduced with the traditional TIVAP (75% at ≤5 mm vs. 35% vs. >5 mm, p = 0.025), but the success rate with the Y-Z MTIVAP was not significantly affected (100% vs. 95%, p = 1.000). The operation time with the Y-Z MTIVAP was significantly shorter than that with the traditional TIVAP at either depth range (both p < 0.001), and 90% of operators reported that the Y-Z MTIVAP was superior to the traditional TIVAP.ConclusionsThe theoretical design of Y-Z MTIVAP is feasible, and the preliminary in vitro simulation experiment shows that it can significantly improve puncture success rate and shortened operation time

    Rheological properties and structural features of coconut milk emulsions stabilized with maize kernels and starch

    Get PDF
    peer-reviewedIn this study, maize kernels and starch with different amylose contents at the same concentration were added to coconut milk. The nonionic composite surfactants were used to prepare various types of coconut milk beverages with optimal stability, and their fluid properties were studied. The steady and dynamic rheological property tests show that the loss modulus (G″) of coconut milk is larger than the storage modulus (G′), which is suitable for the pseudoplastic fluid model and has a shear thinning effect. As the droplet size of the coconut milk fluid changed by the addition of maize kernels and starch, the color intensity, ζ-potential, interfacial tension and stability of the sample significantly improved. The addition of the maize kernels significantly reduced the size of the droplets (p < 0.05). The potential values of zeta (ζ) and the surface tension of the coconut milk increased. Based on the differential scanning calorimetry (DSC) measurement, the addition of maize kernels leads to an increase in the transition temperature, especially in samples with a high amylose content. The higher transition temperature can be attributed to the formation of some starches and lipids and the partial denaturation of proteins in coconut milk, but phase separation occurs. These results may be helpful for determining the properties of maize kernels in food-containing emulsions (such as sauces, condiments, and beverages) that achieve the goal of physical stability

    Cardiac Function Assessment in Fetuses With Ductus Arteriosus Constriction: A Two-Dimensional Echocardiography and FetalHQ Study

    Get PDF
    BackgroundFetal ductal constriction (DC) is associated with excessive polyphenol-rich food (PRF) consumption during pregnancy. However, the effect of this hemodynamic change on fetal cardiac function still needs to be elucidated. Therefore, this study aimed to evaluate the cardiac function of fetuses with PRF-related DC and to describe serial observations of cardiac function changes.MethodsWe compared the traditional echocardiographic indices, including morphological, hemodynamic, and functional parameters, between study fetuses and controls. For global and segmental deformation analysis of the left and right ventricles, fetalHQ with the speckle-tracking technique was used to calculate sphericity index (SI), global longitudinal strain (GLS), fractional shortening (FS), fractional area change (FAC), etc. In addition, follow-up data were compared with the generalized linear model.ResultsA total of 60 DC fetuses and 60 gestational-matched controls were enrolled in our study, with 20 DC fetuses undertaking a follow-up echocardiogram after 2–3 weeks. Compared with controls, there was a distinct decrease in right ventricular GLS (RVGLS) (−13.39 ± 3.77 vs. −21.59 ± 2.51, p &lt; 0.001), RVFAC (22.20 ± 9.56 vs. 36.01 ± 4.84, p &lt; 0.001), left ventricular GLS (LVGLS) (−19.52 ± 3.24 vs. −23.81 ± 2.01 p &lt; 0.001), and LVFAC (39.64 ± 7.32 vs. 44.89 ± 4.91, p = 0.004). For 24-segment FS analysis, DC fetuses showed lower FS in left ventricular (LV) segments 18–24, with no difference in LV segments 1–17. Right ventricular (RV) FS in segments 4–23 was also reduced in the DC group. The 24-segment SI analysis indicated significantly lower SI in DC than those in controls for LV segments 1–14 and RV segments 19–24. We found that the pulsatility index (PI) of ductus arteriosus (DA) was an independent variable for RVGLS (β = −0.29, p = 0.04). In 20 DC fetuses with follow-up echocardiograms, no obvious difference in myocardial deformation was found between the initial examination and follow-up data.ConclusionLeft and right ventricular performances were both impaired in DC fetuses, along with a series of morphological and hemodynamic changes. Although the state of DA constriction improved on second examinations, cardiac function was not completely restored

    Analysis of cognitive function and its related factors after treatment in Meniere’s disease

    Get PDF
    A growing body of research recently suggested the association between vestibular dysfunction and cognitive impairment. Meniere’s disease (MD), a common clinical vestibular disorder, is usually accompanied by hearing loss and emotional stress, both of which may mediate the relationship between vestibule dysfunction and cognition. It is currently unknown whether the cognitive decline in MD patients could improve through treatment and how it relates to multiple clinical characteristics, particularly the severity of vertigo. Therefore, in the present study, the MD patients were followed up for 3, 6, and 12 months after treatment, and the cognitive functions, vertigo symptoms, and related physical, functional, and emotional effects of the patients were assessed using the Montreal Cognitive Assessment (MoCA) and Dizziness Handicap Inventory (DHI), aiming to explore the change in cognition before and after therapy and the correlation with various clinical features. It was found that cognitive decline in MD patients compared to healthy controls before therapy. Importantly, this cognitive impairment could improve after effective therapy, which was related to the severity of vertigo, especially in functional and physical impacts. Our results support the view that vestibular dysfunction is a potentially modifiable risk factor for cognitive decline

    Evidences for pressure-induced two-phase superconductivity and mixed structures of NiTe₂ and NiTe in type-II Dirac semimetal NiTe_(2-x) (x = 0.38 ± 0.09) single crystals

    Get PDF
    Bulk NiTe₂ is a type-II Dirac semimetal with non-trivial Berry phases associated with the Dirac fermions. Theory suggests that monolayer NiTe₂ is a two-gap superconductor, whereas experimental investigation of bulk NiTe_(1.98) for pressures (P) up to 71.2 GPa do not reveal any superconductivity. Here we report experimental evidences for pressure-induced two-phase superconductivity as well as mixed structures of NiTe₂ and NiTe in Te-deficient NiTe_(2-x) (x = 0.38±0.09) single crystals. Hole-dominant multi-band superconductivity with the P3M1 hexagonal-symmetry structure of NiTe₂ appears at P ≥ 0.5 GPa, whereas electron-dominant single-band superconductivity with the P2/m monoclinic-symmetry structure of NiTe emerges at 14.5 GPa < P < 18.4 GPa. The coexistence of hexagonal and monoclinic structures and two-phase superconductivity is accompanied by a zero Hall coefficient up to ∼ 40 GPa, and the second superconducting phase prevails above 40 GPa, reaching a maximum T_c = 7.8 K and persisting up to 52.8 GPa. Our findings suggest the critical role of Te-vacancies in the occurrence of superconductivity and potentially nontrivial topological properties in NiTe_(2-x)

    Policy shifts influence the functional changes of the CNH systems on the Mongolian plateau

    Get PDF
    By applying the concept of the coupled natural and human system (CNH), we compared spatiotemporal changes in livestock (LSK), land cover, and ecosystem production to understand the relative roles that natural and social driving forces have on CNH dynamics on the Mongolia plateau. We used socioeconomic and physical data at prefecture level for Inner Mongolia and Mongolia from 1981 through 2010 to represent changes in net primary productivity (NPP), enhanced vegetation index (EVI), precipitation, annual average temperature, LSK, livestock density (LSKD), land cover change (LCC), gross domestic production (GDP), and population (POP). The ratios such as LSK:NPP, LSKD: EVI, LSKD:albedo, LSK:POP, and LSK:GDP were examined and compared between Inner Mongolia and Mongolia, and structural equation modeling (SEM) was applied to quantify the complex interactions. Substantial differences in LSK, POP, and economic development were found among the biomes and between Inner Mongolia and Mongolia. When various indicators for policy shifts—such as the World Trade Organization (WTO) for China, the Third Campaign to Reclaim Abandoned Agriculture Lands (ATAR-3), and the Grain for Green Program for China (GFG)—were added into our SEM, the results showed significant change in the strength of the above relationships. After China joined the WTO, the relationships in Inner Mongolia between LSKD:LCC and LSKD:NPP were immensely strengthened, whereas relationships in NPP:LCC were weakened. In Mongolia, the ATAR-3 program first appeared to be an insignificant policy, but the Collapse of the Soviet Union enhanced the correlation between LSKD:LCC, weakened the connection of LCC:NPP, and did not affect LSKD:NPP. We conclude that human influences on the Mongolian CNH system exceeded those of the biophysical changes, but that the significance varies in time and per biome, as well as between Inner Mongolia and Mongolia

    Radiogenomic Analysis of Papillary Thyroid Carcinoma for Prediction of Cervical Lymph Node Metastasis: A Preliminary Study

    Get PDF
    Background Papillary thyroid carcinoma (PTC) is characterized by frequent metastases to cervical lymph nodes (CLNs), and the presence of lymph node metastasis at diagnosis has a significant impact on the surgical approach. Therefore, we established a radiomic signature to predict the CLN status of PTC patients using preoperative thyroid ultrasound, and investigated the association between the radiomic features and underlying molecular characteristics of PTC tumors. Methods In total, 270 patients were enrolled in this prospective study, and radiomic features were extracted according to multiple guidelines. A radiomic signature was built with selected features in the training cohort and validated in the validation cohort. The total protein extracted from tumor samples was analyzed with LC/MS and iTRAQ technology. Gene modules acquired by clustering were chosen for their diagnostic significance. A radiogenomic map linking radiomic features to gene modules was constructed with the Spearman correlation matrix. Genes in modules related to metastasis were extracted for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and a protein-protein interaction (PPI) network was built to identify the hub genes in the modules. Finally, the screened hub genes were validated by immunohistochemistry analysis. Results The radiomic signature showed good performance for predicting CLN status in training and validation cohorts, with area under curve of 0.873 and 0.831 respectively. A radiogenomic map was created with nine significant correlations between radiomic features and gene modules, and two of them had higher correlation coefficient. Among these, MEmeganta representing the upregulation of telomere maintenance via telomerase and cell-cell adhesion was correlated with 'Rectlike' and 'deviation ratio of tumor tissue and normal thyroid gland' which reflect the margin and the internal echogenicity of the tumor, respectively. MEblue capturing cell-cell adhesion and glycolysis was associated with feature 'minimum calcification area' which measures the punctate calcification. The hub genes of the two modules were identified by protein-protein interaction network. Immunohistochemistry validated that LAMC1 and THBS1 were differently expressed in metastatic and non-metastatic tissues (p=0.003; p=0.002). And LAMC1 was associated with feature 'Rectlike' and 'deviation ratio of tumor and normal thyroid gland' (p<0.001; p<0.001); THBS1 was correlated with 'minimum calcification area' (p<0.001). Conclusions The radiomic signature proposed here has the potential to noninvasively predict the CLN status in PTC patients. Merging imaging phenotypes with genomic data could allow noninvasive identification of the molecular properties of PTC tumors, which might support clinical decision making and personalized management

    Hepato-specific microRNA-122 facilitates accumulation of newly synthesized miRNA through regulating PRKRA

    Get PDF
    microRNAs (miRNAs) are a versatile class of non-coding RNAs involved in regulation of various biological processes. miRNA-122 (miR-122) is specifically and abundantly expressed in human liver. In this study, we employed 3′-end biotinylated synthetic miR-122 to identify its targets based on affinity purification. Quantitative RT-PCR analysis of the affinity purified RNAs demonstrated a specific enrichment of several known miR-122 targets such as CAT-1 (also called SLC7A1), ADAM17 and BCL-w. Using microarray analysis of affinity purified RNAs, we also discovered many candidate target genes of miR-122. Among these candidates, we confirmed that protein kinase, interferon-inducible double-stranded RNA-dependent activator (PRKRA), a Dicer-interacting protein, is a direct target gene of miR-122. miRNA quantitative-RT–PCR results indicated that miR-122 and small interfering RNA against PRKRA may facilitate the accumulation of newly synthesized miRNAs but did not detectably affect endogenous miRNAs levels. Our findings will lead to further understanding of multiple functions of this hepato-specific miRNA. We conclude that miR-122 could repress PRKRA expression and facilitate accumulation of newly synthesized miRNAs
    corecore