15 research outputs found

    Updates of the in-gel digestion method for protein analysis by mass spectrometry

    Get PDF
    The in‐gel digestion of proteins for analysis by liquid chromatograph mass spectrometry has been used since the early 1990s. Although several improvements have contributed to increasing the quality of the data obtained, many recent publications still use sub‐optimal approaches. We present updates of the in‐gel digestion protocol. We show that alternative reducing, alkylating agent reactions and tryptic digestion buffers increase peptide and protein identification and reduce incubation times. Our results indicate that a simultaneous and short, high temperature reduction and alkylation reaction using Tris(2‐carboxyethyl)phosphine hydrochloride (TCEP) and chloroacetamide (CAA) with a subsequent gel wash improve protein identification and sequence coverage, diminish peptide side reactions. Additionally, use of 4‐(2‐Hydroxyethyl)piperazine‐1‐ethanesulfonic acid buffer (HEPES) allows a significant reduction in the digestion time improving trypsin performance and increasing the peptide recovery. The updates of the in‐gel digestion protocol described here are efficient and offer flexibility to be incorporated in any proteomic laboratory

    Proline pre-conditioning of cell monolayers increases post-thaw recovery and viability by distinct mechanisms to other osmolytes

    Get PDF
    Cell cryopreservation is an essential tool for drug toxicity/function screening and transporting cell-based therapies, and is essential in most areas of biotechnology. There is a challenge, however, associated with the cryopreservation of cells in monolayer format (attached to tissue culture substrates) which gives far lower cell yields (<20% typically) compared to suspension freezing. Here we investigate the mechanisms by which the protective osmolyte L-proline enhances cell-monolayer cryopreservation. Pre-incubating A549 cells with proline, prior to cryopreservation in monolayers, increased post-thaw cell yields two-fold, and the recovered cells grow faster compared to cells cryopreserved using DMSO alone. Further increases in yield were achieved by adding polymeric ice recrystallization inhibitors, which gave limited benefit in the absence of proline. Mechanistic studies demonstrated a biochemical, rather than biophysical (i.e. not affecting ice growth) mode of action. It was observed that incubating cells with proline (before freezing) transiently reduced the growth rate of the cells, which was not seen with other osmolytes (betaine and alanine). Removal of proline led to rapid growth recovery, suggesting that proline pre-conditions the cells for cold stress, but with no impact on downstream cell function. Whole cell proteomics did not reveal a single pathway or protein target but rather cells appeared to be primed for a stress response in multiple directions, which together prepare the cells for freezing. These results support the use of proline alongside standard conditions to improve post-thaw recovery of cell monolayers, which is currently considered impractical. It also demonstrates that a chemical biology approach to discovering small molecule biochemical modulators of cryopreservation may be possible, to be used alongside traditional (solvent) based cryoprotectants

    A proteomic approach to identify endosomal cargoes controlling cancer invasiveness

    Get PDF
    We have previously shown that Rab17 - a small GTPase associated with epithelial polarity - is specifically suppressed by ERK2 signalling to promote an invasive phenotype. However, the mechanisms through which Rab17 loss permits invasiveness, and the endosomal cargoes that are responsible for mediating this are not known. Using quantitative mass spectrometry-based proteomics, we have found that knockdown of Rab17 leads to highly selective reduction in the cellular levels of a v-SNARE (Vamp8). Moreover, proteomics and immunofluorescence indicate that Vamp-8 is associated with Rab17 at late endosomes. Reduced levels of Vamp8 promote transition between ductal carcinoma in situ (DCIS) and a more invasive phenotype. We developed an unbiased proteomic approach to elucidate the complement of receptors that redistributes between endosomes and the plasma membrane, and have pin-pointed neuropilin-2 (NRP2) as a key pro-invasive cargo of Rab17/Vamp8-regulated trafficking. Indeed, reduced Rab17 or Vamp8 levels lead to increased mobilisation of NRP2-containing late endosomes and upregulated cell surface expression of NRP2. Finally, we show that NRP2 is required for the basement membrane disruption which accompanies transition between DCIS and a more invasive phenotype

    Profiling the serum protein corona of fibrillar human islet amyloid polypeptide

    Get PDF
    Amyloids may be regarded as native nanomaterials that form in the presence of complex protein mixtures. By drawing an analogy with the physicochemical properties of nanoparticles in biological fluids, we hypothesized that amyloids should form a protein corona in vivo that would imbue the underlying amyloid with a modified biological identity. To explore this hypothesis we characterized the protein corona of human islet amyloid polypeptide (IAPP) fibrils in FBS using two complementary methodologies developed herein; quartz crystal microbalance and ‘centrifugal capture’, coupled with nano-liquid chromatography tandem mass spectroscopy. Clear evidence for a significant protein corona was obtained. No trends were identified for amyloid corona proteins based on their physicochemical properties, while strong binding with IAPP fibrils occurred for linear proteins or multi-domain proteins with structural plasticity. Proteomic analysis identified amyloid-enriched proteins that are known to play significant roles in mediating cellular machinery and processing, potentially leading to pathological outcomes and therapeutic targets

    Rapid production of pure recombinant actin isoforms in Pichia pastoris

    Get PDF
    Actins are major eukaryotic cytoskeletal proteins, which perform many important cell functions, including cell division, cell polarity, wound healing, and muscle contraction. Despite obvious drawbacks, muscle actin, which is easily purified, is used extensively presently for biochemical studies of actin cytoskeleton from other organisms / cell types. Here we report a rapid and cost-effective method to purify heterologous actins expressed in the yeast Pichia pastoris. Actin is expressed as a fusion with the actin-binding protein thymosin β4 and purified using an affinity tag introduced in the fusion. Following cleavage of thymosin β4 and the affinity tag, highly purified functional full-length actin is liberated. We purify actins from S. cerevisiae, S. pombe, and the β- and γ- isoforms of human actin. We also report a modification of the method that facilitates expression and purification of arginylated actin, a form of actin thought to regulate actin dendritic networks in mammalian cells. The methods we describe can be performed in all laboratories equipped for molecular biology, and should greatly facilitate biochemical and cell biological studies of the actin cytoskeleton

    Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium

    Get PDF
    Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness‐induced CCN1 activates β‐catenin nuclear translocation and signaling and that this contributes to upregulate N‐cadherin levels on the surface of the endothelium, in vitro. This facilitates N‐cadherin‐dependent cancer cell–endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness‐induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis

    Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium

    Get PDF
    YesTumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness-induced CCN1 activates β-catenin nuclear translocation and signaling and that this contributes to upregulate N-cadherin levels on the surface of the endothelium, in vitro This facilitates N-cadherin-dependent cancer cell-endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness-induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.Cancer Research UK (CRUK Beatson Institute C596/A17196, CRUK Glasgow Centre C596/A18076 and S.Z. C596/A12935

    Phosphoregulation of tropomyosin is crucial for actin cable turnover and division site placement

    Get PDF
    Tropomyosin is a coiled-coil actin binding protein key to the stability of actin filaments. Whereas, in muscle cells, tropomyosin is subject to calcium regulation, its regulation in non-muscle cells is not understood. Here, we provide evidence that the fission yeast tropomyosin, Cdc8, is regulated by phosphorylation of a serine residue. Failure of phosphorylation leads to an increased number and stability of actin cables and causes misplacement of the division site in certain genetic backgrounds. Phosphorylation of Cdc8 weakens its interaction with actin filaments. Furthermore, we show through in vitro reconstitution that phosphorylation-mediated release of Cdc8 from actin filaments facilitates access of the actin severing protein Adf1 and subsequent filament disassembly. These studies establish that phosphorylation may be a key mode of regulation of non-muscle tropomyosins, which in fission yeast controls actin filament stability and division site placement

    In vivo quantitative proteomics for the study of oncometabolism

    No full text
    The active reprograming of cellular metabolism is a primary driver of oncogenesis and a hallmark of established neoplastic lesions. Much of this reprogramming depends on the expression levels and posttranslational modifications (PTMs) of metabolic enzymes. Stable isotope labeling of amino acids in culture (SILAC) is an amino acid-based labeling technique that can be used both in vitro and in vivo to comparatively assess the levels and PTMs of proteins. To this aim, SILAC-labeled cell lysates can be spiked into each sample as a standard, followed by the analysis of specimens by mass spectrometry (MS). Combined with appropriate protocols for the lysis and preparation of samples for MS, this technique allows for the accurate and in-depth quantification of the proteome of a wide variety of cell and tissue samples. In particular, SILAC can be employed to infer the metabolic state of neoplastic lesions and obtain a profound understanding of the proteomic alterations that accompany oncogenesis and tumor progression. Here, we describe a proteomic approach based on SILAC, high-resolution chromatography and high-accuracy MS for comparing levels and phosphorylation status of proteins between the samples of interest. This method can be applied not only to the proteomic study of oncometabolism in murine tissues, but also to the study of cellular samples and human specimens

    Evidence for the nuclear import of histones H3.1 & H4 as monomers

    Get PDF
    We present here evidence that histones H3.1 and H4 can be imported into the nucleus as monomers in human cells. Using a tether-and-release system to study the cytosolic phase and import dynamics of newly synthesised histones, we find that H3.1 and H4 can be maintained as stable monomers in the cytosol in a tethered state. Cytosolically tethered histones are bound tightly to Importin-b proteins (predominantly IPO4), but not to the histone specific chaperones NASP, ASF1a, RbAp46 (RBBP7) or HAT1, which reside in the nucleus in interphase cells. Release of monomeric histones from their cytosolic tether results in rapid nuclear translocation, dissociation with IPO4 and incorporation into chromatin at sites of replication. Quantitative analysis of histones bound to individual chaperones under steady-state conditions reveals an excess of H3 specifically associated with sNASP, suggesting that NASP can maintain a soluble, monomeric pool of H3 within the nucleus and may act as a nuclear receptor for newly imported histone. In summary, we propose that histones H3 and H4 are rapidly imported as monomeric units, forming heterodimers in the nucleus rather than the cytosol
    corecore