200 research outputs found
Sericin Promotes Fibroin Silk I Stabilization Across a Phase-Separation.
Natural silk spinning offers several advantages over the synthetic fiber spinning, although the underlying mechanisms of this process are yet to be fully elucidated. Silkworm silks, specifically B. mori, comprise two main proteins: fibroin, which forms the fiber, and sericin, a coextruded coating that acts as a matrix in the resulting nonwoven composite cocoon. To date, most studies have focused on fibroin's self-assembly and gelation, with the influence of sericin during spinning receiving little to no attention. This study investigates sericin's effects on the self-assembly of fibroin via their natural phase-separation. Through changes in sample opacity, FTIR, and XRD, we report that increasing sericin concentration retards the time to gelation and β-sheet formation of fibroin, causing it to adopt a Silk I conformation. Such findings have important implications for both the natural silk spinning process and any future industrial applications, suggesting that sericin may be able to induce long-range conformational and stability control in silk fibroin, while being in a separate phase, a factor that would facilitate long-term storage or silk feedstocks
Neutron and muon-induced background studies for the AMoRE double-beta decay experiment
© 2019 Elsevier B.V.AMoRE (Advanced Mo-based Rare process Experiment) is an experiment to search a neutrinoless double-beta decay of 100Mo in molybdate crystals. The neutron and muon-induced backgrounds are crucial to obtain the zero-background level (<10−5 counts/(keV · kg · yr)) for the AMoRE-II experiment, which is the second phase of the AMoRE project, planned to run at YEMI underground laboratory. To evaluate the effects of neutron and muon-induced backgrounds, we performed Geant4 Monte Carlo simulations and studied a shielding strategy for the AMORE-II experiment. Neutron-induced backgrounds were also included in the study. In this paper, we estimated the background level in the presence of possible shielding structures, which meet the background requirement for the AMoRE-II experiment11sciescopu
Graft immaturity and safety concerns in transplanted human kidney organoids
For chronic kidney disease, regeneration of lost nephrons with human kidney organoids derived from induced pluripotent stem (iPS) cells is proposed to be an attractive potential therapeutic option. It remains unclear, however, whether organoids transplanted into kidneys in vivo would be safe or functional. Here, we purified kidney organoids and transplanted them beneath the kidney capsules of immunodeficient mice to test their safety and maturity. Kidney organoid grafts survived for months after transplantation and became vascularized from host mouse endothelial cells. Nephron-like structures in grafts appeared more mature than kidney organoids in vitro, but remained immature compared with the neighboring mouse kidney tissue. Ultrastructural analysis revealed filtration barrier-like structures, capillary lumens, and tubules with brush border in the transplanted kidney organoids, which were more mature than those of the kidney organoids in vitro but not as organized as adult mammalian kidneys. Immaturity was a common feature of three separate differentiation protocols by immunofluorescence analysis and single cell RNA sequencing. Stroma of transplanted kidney organoid grafts were filled with vimentin-positive mesenchymal cells, and chondrogenesis, cystogenesis, and stromal expansion were observed in the long term. Transcription profiles showed that long-term maintenance after kidney organoid transplantation induced transcriptomic reprogramming with prominent suppression of cell-cycle-related genes and upregulation of extracellular matrix organization. Our data suggest that kidney organoids derived from iPS cells may be transplantable but strategies to improve nephron differentiation and purity are required before they can be applied in humans as a therapeutic option.11Ysciescopuskc
Efeito do ensacamento dos frutos no controle de pragas e doenças e na qualidade e maturação de maçãs ‘Fuji Suprema’.
O objetivo deste trabalho foi avaliar a eficiência de embalagens de diferentes materiais para a proteção contra pragas e doenças e seu efeito sobre a qualidade físico-química, maturação e teor de cálcio (Ca) em maçãs ‘Fuji Suprema’. O experimento foi desenvolvido nas safras de 2007/2008 e 2008/2009, em pomar manejado sob o sistema orgânico, localizado na região de São Joaquim (SC). O pomar era composto por plantas de dez anos de idade da cultivar Fuji Suprema, sobre porta-enxerto ‘Marubakaido’, com interenxerto ‘EM-9’. Depois do raleio manual, aproximadamente 40 dias após a plena floração, os frutos foram ensacados com embalagens plásticas transparentes microperfuradas ou de tecido não texturizado (TNT). Os frutos foram mantidos ensacados até a colheita. A testemunha foi constituída por frutos não ensacados. Na colheita, os frutos foram avaliados quanto aos danos provocados por mosca-das-frutas (Anastrepha fraterculus), mariposa oriental (Grapholita molesta) e lagarta enroladeira (Bonagota salubricola). As doenças foram avaliadas pela incidência de sarna da macieira (Venturia inaequalis), podridão amarga (Colletotrichum gloeosporioides) e podridão carpelar (Alternaria sp., Fusarium sp.). Também foi avaliada a incidência de distúrbios fisiológicos “russeting” e “bitter pit”, atributos físico-químicos de maturação e qualidade e o teor de Ca nos frutos. Independentemente do tipo de embalagem verificou-se que o ensacamento é prática eficaz na proteção contra o ataque de insetos, mas não reduz a incidência e o desenvolvimento de doenças nos frutos. Na safra de 2008/2009, o ensacamento dos frutos aumentou o teor de Ca e reduziu a incidência de “bitter pit”, e aumentou a incidência do “russeting”. O ensacamento dos frutos antecipou a maturação, especialmente com embalagem plástica transparente microperfurada, e reduziu a coloração vermelha, especialmente com embalagem TNT
Simulation of dimensionality effects in thermal transport
The discovery of nanostructures and the development of growth and fabrication
techniques of one- and two-dimensional materials provide the possibility to
probe experimentally heat transport in low-dimensional systems. Nevertheless
measuring the thermal conductivity of these systems is extremely challenging
and subject to large uncertainties, thus hindering the chance for a direct
comparison between experiments and statistical physics models. Atomistic
simulations of realistic nanostructures provide the ideal bridge between
abstract models and experiments. After briefly introducing the state of the art
of heat transport measurement in nanostructures, and numerical techniques to
simulate realistic systems at atomistic level, we review the contribution of
lattice dynamics and molecular dynamics simulation to understanding nanoscale
thermal transport in systems with reduced dimensionality. We focus on the
effect of dimensionality in determining the phononic properties of carbon and
semiconducting nanostructures, specifically considering the cases of carbon
nanotubes, graphene and of silicon nanowires and ultra-thin membranes,
underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture
Notes in Physics volume "Thermal transport in low dimensions: from
statistical physics to nanoscale heat transfer" (S. Lepri ed.
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.
Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health
Search for the Chiral Magnetic Effect in Au+Au collisions at GeV with the STAR forward Event Plane Detectors
A decisive experimental test of the Chiral Magnetic Effect (CME) is
considered one of the major scientific goals at the Relativistic Heavy-Ion
Collider (RHIC) towards understanding the nontrivial topological fluctuations
of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is
expected to result in a charge separation phenomenon across the reaction plane,
whose strength could be strongly energy dependent. The previous CME searches
have been focused on top RHIC energy collisions. In this Letter, we present a
low energy search for the CME in Au+Au collisions at
GeV. We measure elliptic flow scaled charge-dependent correlators relative to
the event planes that are defined at both mid-rapidity and at
forward rapidity . We compare the results based on the
directed flow plane () at forward rapidity and the elliptic flow plane
() at both central and forward rapidity. The CME scenario is expected
to result in a larger correlation relative to than to , while
a flow driven background scenario would lead to a consistent result for both
event planes[1,2]. In 10-50\% centrality, results using three different event
planes are found to be consistent within experimental uncertainties, suggesting
a flow driven background scenario dominating the measurement. We obtain an
upper limit on the deviation from a flow driven background scenario at the 95\%
confidence level. This work opens up a possible road map towards future CME
search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
- …