55 research outputs found

    Requirement for DNA Ligase IV during Embryonic Neuronal Development

    Get PDF
    The embryonic ventricular and subventricular zones (VZ/SVZ) contain the neuronal stem and progenitor cells and undergo rapid proliferation. The intermediate zone (IZ) contains nonreplicating, differentiated cells. The VZ/SVZ is hypersensitive to radiation-induced apoptosis. Ablation of DNA non-homologous end-joining (NHEJ) proteins, XRCC4 or DNA ligase IV (LigIV), confers ataxia telangiectasia mutated (ATM)-dependent apoptosis predominantly in the IZ. We examine the mechanistic basis underlying these distinct sensitivities using a viable LigIV (Lig4(Y288C)) mouse, which permits an examination of the DNA damage responses in the embryonic and adult brain. Via combined analysis of DNA breakage, apoptosis, and cell-cycle checkpoint control in tissues, we show that apoptosis in the VZ/SVZ and IZ is activated by low numbers of DNA double-strand breaks (DSBs). Unexpectedly, high sensitivity in the VZ/SVZ arises from sensitive activation of ATM-dependent apoptosis plus an ATM-independent process. In contrast, the IZ appears to be hypersensitive to persistent DSBs. NHEJ functions efficiently in both compartments. The VZ/SVZ and IZ regions incur high endogenous DNA breakage, which correlates with VZ proliferation. We demonstrate a functional G(2)/M checkpoint in VZ/SVZ cells and show that it is not activated by low numbers of DSBs, allowing damaged VZ/SVZ cells to transit into the IZ. We propose a novel model in which microcephaly in LIG4 syndrome arises from sensitive apoptotic induction from persisting DSBs in the IZ, which arise from high endogenous breakage in the VZ/SVZ and transit of damaged cells to the IZ. The VZ/SVZ, in contrast, is highly sensitive to acute radiation-induced DSB formation

    TDP2-Dependent Non-Homologous End-Joining Protects against Topoisomerase II-Induced DNA Breaks and Genome Instability in Cells and In Vivo

    Get PDF
    Anticancer topoisomerase >poisons> exploit the break-and-rejoining mechanism of topoisomerase II (TOP2) to generate TOP2-linked DNA double-strand breaks (DSBs). This characteristic underlies the clinical efficacy of TOP2 poisons, but is also implicated in chromosomal translocations and genome instability associated with secondary, treatment-related, haematological malignancy. Despite this relevance for cancer therapy, the mechanistic aspects governing repair of TOP2-induced DSBs and the physiological consequences that absent or aberrant repair can have are still poorly understood. To address these deficits, we employed cells and mice lacking tyrosyl DNA phosphodiesterase 2 (TDP2), an enzyme that hydrolyses 5′-phosphotyrosyl bonds at TOP2-associated DSBs, and studied their response to TOP2 poisons. Our results demonstrate that TDP2 functions in non-homologous end-joining (NHEJ) and liberates DSB termini that are competent for ligation. Moreover, we show that the absence of TDP2 in cells impairs not only the capacity to repair TOP2-induced DSBs but also the accuracy of the process, thus compromising genome integrity. Most importantly, we find this TDP2-dependent NHEJ mechanism to be physiologically relevant, as Tdp2-deleted mice are sensitive to TOP2-induced damage, displaying marked lymphoid toxicity, severe intestinal damage, and increased genome instability in the bone marrow. Collectively, our data reveal TDP2-mediated error-free NHEJ as an efficient and accurate mechanism to repair TOP2-induced DSBs. Given the widespread use of TOP2 poisons in cancer chemotherapy, this raises the possibility of TDP2 being an important etiological factor in the response of tumours to this type of agent and in the development of treatment-related malignancy.Gobierno Español SAF2010-21017, BFU2010-11042-EEuropean Union PERG07- 2010-268466Queen Elisabeth Medical Foundation GSKE 111

    TDP2 promotes repair of topoisomerase I-mediated DNA damage in the absence of TDP1

    Get PDF
    The abortive activity of topoisomerases can result in clastogenic and/or lethal DNA damage in which the topoisomerase is covalently linked to the 3'- or 5'-terminus of a DNA strand break. This type of DNA damage is implicated in chromosome translocations and neurological disease and underlies the clinical efficacy of an important class of anticancer topoisomerase 'poisons'. Tyrosyl DNA phosphodiesterase-1 protects cells from abortive topoisomerase I (Top1) activity by hydrolyzing the 3'-phosphotyrosyl bond that links Top1 to a DNA strand break and is currently the only known human enzyme that displays this activity in cells. Recently, we identified a second tyrosyl DNA phosphodiesterase (TDP2; aka TTRAP/EAPII) that possesses weak 3'-tyrosyl DNA phosphodiesterase (3'-TDP) activity, in vitro. Herein, we have examined whether TDP2 contributes to the repair of Top1-mediated DNA breaks by deleting Tdp1 and Tdp2 separately and together in murine and avian cells. We show that while deletion of Tdp1 in wild-type DT40 cells and mouse embryonic fibroblasts decreases DNA strand break repair rates and cellular survival in response to Top1-induced DNA damage, deletion of Tdp2 does not. However, deletion of both Tdp1 and Tdp2 reduces rates of DNA strand break repair and cell survival below that observed in Tdp1(-)(/)(-) cells, suggesting that Tdp2 contributes to cellular 3'-TDP activity in the absence of Tdp1. Consistent with this idea, over-expression of human TDP2 in Tdp1(-)(/)(-)/Tdp2(-)(/)(-)(/)(-) DT40 cells increases DNA strand break repair rates and cell survival above that observed in Tdp1(-)(/)(-) DT40 cells, suggesting that Tdp2 over-expression can partially complement the defect imposed by loss of Tdp1. Finally, mice lacking both Tdp1 and Tdp2 exhibit greater sensitivity to Top1 poisons than do mice lacking Tdp1 alone, further suggesting that Tdp2 contributes to the repair of Top1-mediated DNA damage in the absence of Tdp1. In contrast, we failed to detect a contribution for Tdp1 to repair Top2-mediated damage. Together, our data suggest that Tdp1 and Tdp2 fulfil overlapping roles following Top1-induced DNA damage, but not following Top2-induced DNA damage, in vivo

    Deficiency of Cks1 leads to learning and long-term memory defects and p27 dependentformation of neuronal cofilin aggregates

    Get PDF
    In mitotic cells, the cyclin-dependent kinase (CDK) subunit protein CKS1 regulates S phase entry by mediating degradation of the CDK inhibitor p27. Although mature neurons lack mitotic CDKs, we found that CKS1 was actively expressed in post-mitotic neurons of the adult hippocampus. Interestingly, Cks1 knockout (Cks1−/−) mice exhibited poor long-term memory, and diminished maintenance of long-term potentiation in the hippocampal circuits. Furthermore, there was neuronal accumulation of cofilin-actin rods or cofilin aggregates, which are associated with defective dendritic spine maturation and synaptic loss. We further demonstrated that it was the increased p27 level that activated cofilin by suppressing the RhoA kinase-mediated inhibitory phosphorylation of cofilin, resulting in the formation of cofilin aggregates in the Cks1−/− neuronal cells. Consistent with reports that the peptidyl-prolyl-isomerase PIN1 competes with CKS1 for p27 binding, we found that inhibition of PIN1 diminished the formation of cofilin aggregates through decreasing p27 levels, thereby activating RhoA and increasing cofilin phosphorylation. Our results revealed that CKS1 is involved in normal glutamatergic synapse development and dendritic spine maturation in adult hippocampus through modulating p27 stability

    PARP-3 and APLF function together to accelerate nonhomologous end joining

    Get PDF
    PARP-3 is a member of the ADP-ribosyl transferase superfamily of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA DSB repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the retention of XRCC4/DNA ligase IV complex in chromatin, suggesting that PARP-3 and APLF accelerate DNA ligation during nonhomologous end-joining (NHEJ). Consistent with this, we show that class switch recombination in Aplf−/− B cells is biased toward microhomology-mediated end-joining, a pathway that operates in the absence of XRCC4/DNA ligase IV, and that the requirement for PARP-3 and APLF for NHEJ is circumvented by overexpression of XRCC4/DNA ligase IV. These data identify molecular roles for PARP-3 and APLF in chromosomal DNA double-strand break repair reactions

    A coordinated DNA damage response promotes adult quiescent neural stem cell activation

    Get PDF
    Stem and differentiated cells frequently differ in their response to DNA damage, which can determine tissue sensitivity. By exploiting insight into the spatial arrangement of subdomains within the adult neural subventricular zone (SVZ) in vivo, we show distinct responses to ionising radiation (IR) between neural stem and progenitor cells. Further, we reveal different DNA damage responses between neonatal and adult neural stem cells (NSCs). Neural progenitors (transit amplifying cells and neuroblasts) but not NSCs (quiescent and activated) undergo apoptosis after 2 Gy IR. This response is cell type- rather than proliferationdependent and does not appear to be driven by distinctions in DNA damage induction or repair capacity. Moreover, exposure to 2 Gy IR promotes proliferation arrest and differentiation in the adult SVZ. These 3 responses are ataxia telangiectasia mutated (ATM)- dependent and promote quiescent NSC (qNSC) activation, which does not occur in the subdomains that lack progenitors. Neuroblasts arising post-IR derive from activated qNSCs rather than irradiated progenitors, minimising damage compounded by replication or mitosis. We propose that rather than conferring sensitive cell death, apoptosis is a form of rapid cell death that serves to remove damaged progenitors and promote qNSC activation. Significantly, analysis of the neonatal (P5) SVZ reveals that although progenitors remain sensitive to apoptosis, they fail to efficiently arrest proliferation. Consequently, their repopulation occurs rapidly from irradiated progenitors rather than via qNSC activation

    XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia

    Get PDF
    XRCC1 is a molecular scaffold protein that assembles multi-protein complexes involved in DNA single-strand break repair1,2. Here we show that biallelic mutations in the human XRCC1 gene are associated with ocular motor apraxia, axonal neuropathy, and progressive cerebellar ataxia. Cells from a patient with mutations in XRCC1 exhibited not only reduced rates of single-strand break repair but also elevated levels of protein ADP-ribosylation. This latter phenotype is recapitulated in a related syndrome caused by mutations in the XRCC1 partner protein PNKP3,4,5 and implicates hyperactivation of poly(ADP-ribose) polymerase/s as a cause of cerebellar ataxia. Indeed, remarkably, genetic deletion of Parp1 rescued normal cerebellar ADP-ribose levels and reduced the loss of cerebellar neurons and ataxia in Xrcc1-defective mice, identifying a molecular mechanism by which endogenous single-strand breaks trigger neuropathology. Collectively, these data establish the importance of XRCC1 protein complexes for normal neurological function and identify PARP1 as a therapeutic target in DNA strand break repair-defective disease
    corecore