125 research outputs found

    A controlled study of team-based learning for undergraduate clinical neurology education

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Team-based learning (TBL), a new active learning method, has not been reported for neurology education. We aimed to determine if TBL was more effective than passive learning (PL) in improving knowledge outcomes in two key neurology topics - neurological localization and neurological emergencies.</p> <p>Methods</p> <p>We conducted a modified crossover study during a nine-week internal medicine posting involving 49 third-year medical undergraduates, using TBL as the active intervention, compared against self-reading as a PL control, for teaching the two topics. Primary outcome was the mean percentage change in test scores immediately after (post-test 1) and 48 hours after TBL (post-test 2), compared to a baseline pre-test. Student engagement was the secondary outcome.</p> <p>Results</p> <p>Mean percentage change in scores was greater in the TBL versus the PL group in post-test 1 (8.8% vs 4.3%, p = 0.023) and post-test 2 (11.4% vs 3.4%, p = 0.001). After adjustment for gender and second year examination grades, mean percentage change in scores remained greater in the TBL versus the PL group for post-test 1 (10.3% vs 5.8%, mean difference 4.5%,95% CI 0.7 - 8.3%, p = 0.021) and post-test 2 (13.0% vs 4.9%, mean difference 8.1%,95% CI 3.7 - 12.5%, p = 0.001), indicating further score improvement 48 hours post-TBL. Academically weaker students, identified by poorer examination grades, showed a greater increase in scores with TBL versus strong students (p < 0.02). Measures of engagement were high in the TBL group, suggesting that continued improvements in scores 48 hours post-TBL may result from self-directed learning.</p> <p>Conclusions</p> <p>Compared to PL, TBL showed greater improvement in knowledge scores, with continued improvement up to 48 hours later. This effect is larger in academically weaker students. TBL is an effective method for improving knowledge in neurological localization and neurological emergencies in undergraduates.</p

    Gene duplications and evolution of vertebrate voltage-gated sodium channels

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Molecular Evolution 63 (2006): 208-221, doi:10.1007/s00239-005-0287-9.Voltage-gated sodium channels underlie action potential generation in excitable tissue. To establish the evolutionary mechanisms that shaped the vertebrate sodium channel a-subunit (SCNA) gene family and their encoded Nav1 proteins, we identified all SCNA genes in several teleost species. Molecular cloning revealed that teleosts have eight SCNA genes, comparable to the number in another vertebrate lineage, mammals. Prior phylogenetic analyses had indicated that teleosts and tetrapods share four monophyletic groups of SCNA genes and that tandem duplications selectively expanded the number of genes in two of the four mammalian groups. However, the number of genes in each group varies between teleosts and tetrapods suggesting different evolutionary histories in the two vertebrate lineages. Our findings from phylogenetic analysis and chromosomal mapping of Danio rerio genes indicate that tandem duplications are an unlikely mechanism for generation of the extant teleost SCNA genes. Instead, analysis of other closely mapped genes in D. rerio supports the hypothesis that a whole genome duplication was involved in expansion of the SCNA gene family in teleosts. Interestingly, despite their different evolutionary histories, mRNA analyses demonstrated a conservation of expression patterns for SCNA orthologues in teleosts and tetrapods, suggesting functional conservation.The authors’ work was supported by NIH grants (NS 38937; AEN, ADT and ABR, NS 25513; HHZ and YL and NSF IBN 0236147; MCJ)

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Improved risk stratification of patients with atrial fibrillation: an integrated GARFIELD-AF tool for the prediction of mortality, stroke and bleed in patients with and without anticoagulation.

    Get PDF
    OBJECTIVES: To provide an accurate, web-based tool for stratifying patients with atrial fibrillation to facilitate decisions on the potential benefits/risks of anticoagulation, based on mortality, stroke and bleeding risks. DESIGN: The new tool was developed, using stepwise regression, for all and then applied to lower risk patients. C-statistics were compared with CHA2DS2-VASc using 30-fold cross-validation to control for overfitting. External validation was undertaken in an independent dataset, Outcome Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). PARTICIPANTS: Data from 39 898 patients enrolled in the prospective GARFIELD-AF registry provided the basis for deriving and validating an integrated risk tool to predict stroke risk, mortality and bleeding risk. RESULTS: The discriminatory value of the GARFIELD-AF risk model was superior to CHA2DS2-VASc for patients with or without anticoagulation. C-statistics (95% CI) for all-cause mortality, ischaemic stroke/systemic embolism and haemorrhagic stroke/major bleeding (treated patients) were: 0.77 (0.76 to 0.78), 0.69 (0.67 to 0.71) and 0.66 (0.62 to 0.69), respectively, for the GARFIELD-AF risk models, and 0.66 (0.64-0.67), 0.64 (0.61-0.66) and 0.64 (0.61-0.68), respectively, for CHA2DS2-VASc (or HAS-BLED for bleeding). In very low to low risk patients (CHA2DS2-VASc 0 or 1 (men) and 1 or 2 (women)), the CHA2DS2-VASc and HAS-BLED (for bleeding) scores offered weak discriminatory value for mortality, stroke/systemic embolism and major bleeding. C-statistics for the GARFIELD-AF risk tool were 0.69 (0.64 to 0.75), 0.65 (0.56 to 0.73) and 0.60 (0.47 to 0.73) for each end point, respectively, versus 0.50 (0.45 to 0.55), 0.59 (0.50 to 0.67) and 0.55 (0.53 to 0.56) for CHA2DS2-VASc (or HAS-BLED for bleeding). Upon validation in the ORBIT-AF population, C-statistics showed that the GARFIELD-AF risk tool was effective for predicting 1-year all-cause mortality using the full and simplified model for all-cause mortality: C-statistics 0.75 (0.73 to 0.77) and 0.75 (0.73 to 0.77), respectively, and for predicting for any stroke or systemic embolism over 1 year, C-statistics 0.68 (0.62 to 0.74). CONCLUSIONS: Performance of the GARFIELD-AF risk tool was superior to CHA2DS2-VASc in predicting stroke and mortality and superior to HAS-BLED for bleeding, overall and in lower risk patients. The GARFIELD-AF tool has the potential for incorporation in routine electronic systems, and for the first time, permits simultaneous evaluation of ischaemic stroke, mortality and bleeding risks. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier for GARFIELD-AF (NCT01090362) and for ORBIT-AF (NCT01165710)
    corecore