1,556 research outputs found

    The Use of a Satellite Communications System for Command and Control of the National Aeronautics and Space Administration Surrogate Unmanned Aerial System Research Aircraft

    Get PDF
    The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into an Unmanned Aerial Systems (UAS) Surrogate research aircraft which has served for several years as a platform for unmanned systems research and development. The aircraft is manned with a Safety Pilot and a Research Systems Operator (RSO) that allows for flight operations almost any-where in the national airspace system (NAS) without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be remotely controlled from a modular, transportable ground control station (GCS) like a true UAS. Ground control of the aircraft is accomplished by the use of data links that allow the two-way passage of the required data to control the aircraft and provide the GCS with situational awareness. The original UAS Surrogate data-link system was composed of redundant very high frequency (VHF) data radio modems with a maximum range of approximately 40 nautical miles. A new requirement was developed to extend this range beyond visual range (BVR). This new requirement led to the development of a satellite communications system that provided the means to command and control the UAS Surrogate at ranges beyond the limits of the VHF data links. The system makes use of the Globalstar low earth orbit (LEO) satellite communications system. This paper will provide details of the development, implementation, and flight testing of the satellite data communications system on the UAS Surrogate research aircraft

    Efficient Replication of Over 180 Genetic Associations with Self-Reported Medical Data

    Get PDF
    While the cost and speed of generating genomic data have come down dramatically in recent years, the slow pace of collecting medical data for large cohorts continues to hamper genetic research. Here we evaluate a novel online framework for amassing large amounts of medical information in a recontactable cohort by assessing our ability to replicate genetic associations using these data. Using web-based questionnaires, we gathered self-reported data on 50 medical phenotypes from a generally unselected cohort of over 20,000 genotyped individuals. Of a list of genetic associations curated by NHGRI, we successfully replicated about 75% of the associations that we expected to (based on the number of cases in our cohort and reported odds ratios, and excluding a set of associations with contradictory published evidence). Altogether we replicated over 180 previously reported associations, including many for type 2 diabetes, prostate cancer, cholesterol levels, and multiple sclerosis. We found significant variation across categories of conditions in the percentage of expected associations that we were able to replicate, which may reflect systematic inflation of the effects in some initial reports, or differences across diseases in the likelihood of misdiagnosis or misreport. We also demonstrated that we could improve replication success by taking advantage of our recontactable cohort, offering more in-depth questions to refine self-reported diagnoses. Our data suggests that online collection of self-reported data in a recontactable cohort may be a viable method for both broad and deep phenotyping in large populations

    Hematological, biochemical, and morphological parameters as prognostic indicators for stranded common dolphins (Delphinus delphis) from Cape Cod, Massachusetts, U.S.A.

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Mammal Science 30 (2014): 864–887, doi:10.1111/mms.12093.The current paucity of published blood values and other clinically relevant data for short-beaked common dolphins, Delphinus delphis, hinders the ability of veterinarians and responders to make well-informed diagnoses and disposition decisions regarding live strandings of this species. This study examined hematologic, clinical chemistry, and physical parameters from 26 stranded common dolphins on Cape Cod, Massachusetts, in light of their postrelease survival data to evaluate each parameter's efficacy as a prognostic indicator. Statistically and clinically significant differences were found between failed and survived dolphins, including lower hematocrit, hemoglobin, TCO2, and bicarbonate and higher blood urea nitrogen, uric acid, and length-to-girth ratios in animals that failed. In general when compared to survivors, failed dolphins exhibited acidosis, dehydration, lower PCVs, and decreased body condition. Additionally, failed dolphins had the highest ALT, AST, CK, LDH, GGT, and lactate values. These blood values combined with necropsy findings indicate that there are likely a variety of factors affecting postrelease survival, including both preexisting illness and stranding-induced conditions such as capture myopathy. Closer evaluation of these parameters for stranded common dolphins on point of care analyzers in the field may allow stranding personnel to make better disposition decisions in the future.The John H. Prescott Marine Mammal Rescue Assistance Program provided support for stranding response efforts during this study period (Grants: NA11NMF4390078, NA11NMF4390079, NA11NMF4390093). We would like to thank the Pegasus Foundation and Barbara Birdsey for their support and funding for the IFAW Satellite Tag Program. This project would not have been possible without a summer research grant from the US Army Medical Research and Material Command through Tufts Cummings School of Veterinary Medicine (TCSVM)

    Relative contributions of six lifestyle- and health-related exposures to epigenetic aging: The Coronary Artery Risk Development in Young Adults (CARDIA) study

    Get PDF
    BACKGROUND: DNA methylation-based GrimAge acceleration (GrimAA) is associated with a wide range of age-related health outcomes including cardiovascular disease. Since DNA methylation is modifiable by external and behavioral exposures, it is important to identify which of these exposures may have the strongest contributions to differences in GrimAA, to help guide potential intervention strategies. Here, we assessed the relative contributions of lifestyle- and health-related components, as well as their collective association, to GrimAA. RESULTS: We included 744 participants (391 men and 353 women) from the Coronary Artery Risk Development in Young Adults (CARDIA) study with blood DNA methylation information at CARDIA Exam Year (Y) 20 (2005-2006, mean age 45.9 years). Six cumulative exposures by Y20 were included in the analysis: total packs of cigarettes, total alcohol consumption, education years, healthy diet score, sleep hours, and physical activity. We used quantile-based g-computation (QGC) and Bayesian kernel machine regression (BKMR) methods to assess the relative contribution of each exposure to a single overall association with GrimAA. We also assessed the collective association of the six components combined with GrimAA. Smoking showed the greatest positive contribution to GrimAA, accounting for 83.5% of overall positive associations of the six exposures with GrimAA (QGC weight = 0.835). The posterior inclusion probability (PIP) of smoking also achieved the highest score of 1.0 from BKMR analysis. Healthy diet and education years showed inverse contributions to GrimAA. We observed a U-shaped pattern in the contribution of alcohol consumption to GrimAA. While smoking was the greatest contributor across sex and race subgroups, the relative contributions of other components varied by subgroups. CONCLUSIONS: Smoking, alcohol consumption, and education showed the highest contributions to GrimAA in our study. Higher amounts of smoking and alcohol consumption were likely to contribute to greater GrimAA, whereas achieved education was likely to contribute to lower GrimAA. Identifying pertinent lifestyle- and health-related exposures in a context of collective components can provide direction for intervention strategies and suggests which components should be the primary focus for promoting younger GrimAA

    In Vivo Optical Metabolic Imaging of Long-Chain Fatty Acid Uptake in Orthotopic Models of Triple-Negative Breast Cancer

    Get PDF
    Targeting a tumor’s metabolic dependencies is a clinically actionable therapeutic approach; however, identifying subtypes of tumors likely to respond remains difficult. The use of lipids as a nutrient source is of particular importance, especially in breast cancer. Imaging techniques offer the opportunity to quantify nutrient use in preclinical tumor models to guide development of new drugs that restrict uptake or utilization of these nutrients. We describe a fast and dynamic approach to image fatty acid uptake in vivo and demonstrate its relevance to study both tumor metabolic reprogramming directly, as well as the effectiveness of drugs targeting lipid metabolism. Specifically, we developed a quantitative optical approach to spatially and longitudinally map the kinetics of long-chain fatty acid uptake in in vivo murine models of breast cancer using a fluorescently labeled palmitate molecule, Bodipy FL c16. We chose intra-vital microscopy of mammary tumor windows to validate our approach in two orthotopic breast cancer models: a MYC-overexpressing, transgenic, triple-negative breast cancer (TNBC) model and a murine model of the 4T1 family. Following injection, Bodipy FL c16 fluorescence increased and reached its maximum after approximately 30 min, with the signal remaining stable during the 30–80 min post-injection period. We used the fluorescence at 60 min (Bodipy60), the mid-point in the plateau region, as a summary parameter to quantify Bodipy FL c16 fluorescence in subsequent experiments. Using our imaging platform, we observed a two- to four-fold decrease in fatty acid uptake in response to the downregulation of the MYC oncogene, consistent with findings from in vitro metabolic assays. In contrast, our imaging studies report an increase in fatty acid uptake with tumor aggressiveness (6NR, 4T07, and 4T1), and uptake was significantly decreased after treatment with a fatty acid transport inhibitor, perphenazine, in both normal mammary pads and in the most aggressive 4T1 tumor model. Our approach fills an important gap between in vitro assays providing rich metabolic information at static time points and imaging approaches visualizing metabolism in whole organs at a reduced resolution

    Marijuana use and DNA methylation-based biological age in young adults

    Get PDF
    BACKGROUND: Marijuana is the third most commonly used drug in the USA and efforts to legalize it for medical and recreational use are growing. Despite the increase in use, marijuana\u27s effect on aging remains understudied and understanding the effects of marijuana on molecular aging may provide novel insights into the role of marijuana in the aging process. We therefore sought to investigate the association between cumulative and recent use of marijuana with epigenetic age acceleration (EAA) as estimated from blood DNA methylation. RESULTS: A random subset of participants from The Coronary Artery Risk Development in Young Adults (CARDIA) Study with available whole blood at examination years (Y) 15 and Y20 underwent epigenomic profiling. Four EAA estimates (intrinsic epigenetic age acceleration, extrinsic epigenetic age acceleration, PhenoAge acceleration, and GrimAge acceleration) were calculated from DNA methylation levels measured at Y15 and Y20. Ever use and cumulative marijuana-years were calculated from the baseline visit to Y15 and Y20, and recent marijuana use (both any and number of days of use in the last 30 days) were calculated at Y15 and Y20. Ever use of marijuana and each additional marijuana-year were associated with a 6-month (P \u3c 0.001) and a 2.5-month (P \u3c 0.001) higher average in GrimAge acceleration (GAA) using generalized estimating equations, respectively. Recent use and each additional day of recent use were associated with a 20-month (P \u3c 0.001) and a 1-month (P \u3c 0.001) higher GAA, respectively. A statistical interaction between marijuana-years and alcohol consumption on GAA was observed (P = 0.011), with nondrinkers exhibiting a higher GAA (β = 0.21 [95% CI 0.05, 0.36], P = 0.008) compared to heavy drinkers (β = 0.05 [95% CI - 0.09, 0.18], P = 0.500) per each additional marijuana-year. No associations were observed for the remaining EAA estimates. CONCLUSIONS: These findings suggest cumulative and recent marijuana use are associated with age-related epigenetic changes that are related to lifespan. These observed associations may be modified by alcohol consumption. Given the increase in use and legalization, these findings provide novel insight on the effect of marijuana use on the aging process as captured through blood DNA methylation

    Atypical functional connectivity during unfamiliar music listening in children with autism

    Get PDF
    Background: Atypical processing of unfamiliar, but less so familiar, stimuli has been described in Autism Spectrum Disorder (ASD), in particular in relation to face processing. We examined the construct of familiarity in ASD using familiar and unfamiliar songs, to investigate the link between familiarity and autism symptoms, such as repetitive behavior. Methods: Forty-eight children, 24 with ASD (21 males, mean age = 9.96 years ± 1.54) and 24 typically developing (TD) controls (21 males, mean age = 10.17 ± 1.90) completed a music familiarity task using individually identified familiar compared to unfamiliar songs, while magnetoencephalography (MEG) was recorded. Each song was presented for 30 s. We used both amplitude envelope correlation (AEC) and the weighted phase lag index (wPLI) to assess functional connectivity between specific regions of interest (ROI) and non-ROI parcels, as well as at the whole brain level, to understand what is preserved and what is impaired in familiar music listening in this population. Results: Increased wPLI synchronization for familiar vs. unfamiliar music was found for typically developing children in the gamma frequency. There were no significant differences within the ASD group for this comparison. During the processing of unfamiliar music, we demonstrated left lateralized increased theta and beta band connectivity in children with ASD compared to controls. An interaction effect found greater alpha band connectivity in the TD group compared to ASD to unfamiliar music only, anchored in the left insula.Conclusion: Our results revealed atypical processing of unfamiliar songs in children with ASD, consistent with previous studies in other modalities reporting that processing novelty is a challenge for ASD. Relatively typical processing of familiar stimuli may represent a strength and may be of interest to strength-based intervention planning.info:eu-repo/semantics/publishedVersio

    Unwinding of primer-templates by archaeal family-B DNA polymerases in response to template-strand uracil

    Get PDF
    Archaeal family-B DNA polymerases bind tightly to deaminated bases and stall replication on encountering uracil in template strands, four bases ahead of the primer-template junction. Should the polymerase progress further towards the uracil, for example, to position uracil only two bases in front of the junction, 3′–5′ proof-reading exonuclease activity becomes stimulated, trimming the primer and re-setting uracil to the +4 position. Uracil sensing prevents copying of the deaminated base and permanent mutation in 50% of the progeny. This publication uses both steady-state and time-resolved 2-aminopurine fluorescence to show pronounced unwinding of primer-templates with Pyrococcus furiosus (Pfu) polymerase–DNA complexes containing uracil at +2; much less strand separation is seen with uracil at +4. DNA unwinding has long been recognized as necessary for proof-reading exonuclease activity. The roles of M247 and Y261, amino acids suggested by structural studies to play a role in primer-template unwinding, have been probed. M247 appears to be unimportant, but 2-aminopurine fluorescence measurements show that Y261 plays a role in primer-template strand separation. Y261 is also required for full exonuclease activity and contributes to the fidelity of the polymerase
    corecore