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ABSTRACT

Archaeal family-B DNA polymerases bind tightly to
deaminated bases and stall replication on encoun-
tering uracil in template strands, four bases ahead
of the primer-template junction. Should the poly-
merase progress further towards the uracil, for
example, to position uracil only two bases in front
of the junction, 30–50 proof-reading exonuclease
activity becomes stimulated, trimming the primer
and re-setting uracil to the +4 position. Uracil
sensing prevents copying of the deaminated base
and permanent mutation in 50% of the progeny.
This publication uses both steady-state and time-
resolved 2-aminopurine fluorescence to show
pronounced unwinding of primer-templates with
Pyrococcus furiosus (Pfu) polymerase–DNA com-
plexes containing uracil at +2; much less strand
separation is seen with uracil at+4. DNA unwinding
has long been recognized as necessary for
proof-reading exonuclease activity. The roles of
M247 and Y261, amino acids suggested by struc-
tural studies to play a role in primer-template
unwinding, have been probed. M247 appears to be
unimportant, but 2-aminopurine fluorescence meas-
urements show that Y261 plays a role in primer-
template strand separation. Y261 is also required
for full exonuclease activity and contributes to the
fidelity of the polymerase.

INTRODUCTION

Archaeal family-B DNA polymerases, e.g. the enzymes
from Pyrococcus furiosus (Pfu-Pol) or Thermococcus
gorgonarius (Tgo-Pol), specifically recognize uracil and

hypoxanthine, stalling replication on encountering these
bases (1–8). A pocket, situated in the polymerase
N-terminal domain, interacts with uracil and hypoxan-
thine using a combination of hydrogen bonds and steric
factors to exclude canonical DNA bases, resulting in 100-
to 300-fold tighter binding of deaminated base–containing
DNA (3–5,8). Stalling is most pronounced with uracil/
hypoxanthine four bases (+4) ahead of the primer-
template junction (1,2), and DNA with deaminated
bases at+4 shows the highest affinity for the polymerase
(3). However, primer-templates that contain uracil at+1,
+2 and+3 also interact well (3), and for several years, it
was unclear how the polymerase could accommodate
these different orientations. Several observations have
begun to resolve this dilemma. When uracil is located at
+4, polymerase activity is strongly inhibited, and the 30–50

proof-reading exonuclease slightly reduced. Should the
enzyme incorporate additional dNTPs, and therefore,
progress towards the deaminated base (e.g. placing
uracil at +2), proof-reading exonuclease activity is
stimulated (7). This trims back the elongating primer
and re-sets uracil to+4, preventing the polymerase extend-
ing beyond the deaminated base. It is thought that stalling
serves to protect against the inappropriate copying of de-
aminated bases and the introduction of mutations into
the genome (1,2). The increase in exonuclease activity
serves as an additional safeguard, demonstrated by the
observation that exo� mutants of the polymerase are
better able to replicate beyond uracil than the wild type
(7). The polymerase and exonuclease domains of DNA
polymerases are well separated, and unwinding of the
primer to expose a short single-stranded region is
required to position the 30-terminal base of the primer in
the exonuclease active site (9–13). Our group proposed
that if the polymerase approaches nearer than four bases
to uracil, the primer starts to unravel, giving a short
single-stranded region at its 30 end (7). Such separation
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explains why primer-templates with uracil at+1,+2 and
+3 are still capable of interacting strongly with the poly-
merase. After binding, an appropriate degree of DNA de-
naturation creates an actual separation of four bases
between the last base pair in the primer-template and
the deaminated base. Additionally, the formation of a
single-stranded region in the primer accounts for its
rapid trimming by the proof-reading exonuclease. A
recent crystal structure of Tgo-Pol, bound to a primer-
template mimic containing hypoxanthine in the +2
position, supported the prediction of unwinding (8). The
last two bases at the 30 end of the primer were single
stranded and directed towards the exonuclease active
site, resulting in a four-base separation between hypoxan-
thine and the primer-template junction (Figure 1A).

In family-B DNA polymerases, a b-hairpin motif,
comprising two anti-parallel b-strands joined by a loop,
critically influences the choice between primer strand
extension (catalysed by the polymerase active site) and
degradation (carried out by the proof-reading exonuclease
centre). Most studied are the viral (bacteriophage) T4 and
RB69 family-B polymerases, and structural, kinetic, spec-
troscopic and mutagenesis data originally suggested that
the b-hairpin may actively separate primer and template
strands (12–15). A recent study proposed that this motif is
responsible for tight binding of DNA as the mismatched
primer unwinds from the template strand (16). The struc-
ture of Tgo-Pol, bound to a hypoxanthine-containing
primer-template mimic, showed the b-hairpin in the
vicinity of the primer-template junction (Figure 1A), sug-
gesting the motif may be important in the decision
between polymerization and proof-reading exonucleolysis.
The denatured single-stranded primer was located on one
side of the b-hairpin, in the exonuclease channel, with the
template found on the other side in the direction of the

deaminated base–binding pocket. This structure also high-
lighted two amino acids, which may be important in
tightly binding the partially denatured DNA and/or
actively separating primer-template bases and preventing
their re-annealing. Arginine 247, an amino acid in the
b-hairpin, formed a stacking interaction with one of the
newly single-stranded template bases, while tyrosine 261
was positioned between the melted primer-template bases
(Figure 1B). As expected, an earlier Tgo-Pol structure,
using a primer-template mimic with uracil at+4, showed
no separation of the primer and template strands (5).
The proposal that archaeal DNA polymerases unwind

primer-template strands on approaching uracil or hypo-
xanthine was initially based on kinetic studies (7) and con-
firmed by X-ray crystallography (8). Strand separation is
common with DNA polymerases but usually takes place
with DNA containing mismatched bases, allowing
removal of incorrectly incorporated dNMPs. The denatur-
ation of fully Watson–Crick base-paired substrates by
archaeal polymerases is, therefore, unusual and merits
further investigation, particularly to ensure that the X-ray
structure has not fortuitously captured a conformational
variant that is rare in solution. The base analogue
2-aminopurine (AP) has long been used as a probe of
DNA structure, distortion and dynamics owing to its
useful fluorescence properties. The fluorescence of AP (ex-
citation: �315 nm, emission: �360 nm) is strongly
quenched by base-stacking interactions when it is present
in double-stranded DNA (17–19). Oligodeoxynucleotides
containing AP have been used to study DNA distortion
with a number of enzymes including viral DNA polymer-
ases, with emphasis on the role of the b-hairpin motif in
proof reading (15,20,21). Other investigations have
focussed on RNA polymerase (22), uracil-DNA-
glycosylase (23), DNA methyltransferases (24–26) and

A B C

Figure 1. (A) Structure of the DNA separation region of Tgo-Pol bound to a primer-template mimic containing hypoxanthine at the+2 position (8).
The two bases at the extreme 30 end of the primer, C28 and T27, are single stranded and not base paired with their template partners, G5 and A6,
respectively. Thus, the base pairs nearest to the 30 end of the primer are C26–G7 and T25–A8 (shown with hatched lines indicating Watson–Crick
hydrogen bonds rather than being individually labelled). The position of hypoxanthine (H), which is buried in the deaminated base–binding pocket,
is also shown. The b-hairpin motif is shown in cyan. Tyr261 and Arg247 are shown in red. The numbering used for the bases is taken from reference
8. (B) Interaction of Tgo-Pol Y261 and R247 with DNA. C26 and G7 are base paired, but the primer bases T27 and C28 are single stranded and
unwound from their complementary template bases A6 and G5. Y261 (red) is located on an a-helix (magenta) �3.5 Å from T27. R247 (red) is
located on the b-hairpin motif (cyan) �3.5 Å from A6. The N9 atoms of the neighbouring bases A6 and G5 are �10 Å apart. (C) Superimposition of
Tgo-Pol Y261 (red) with RB69 I274 (blue). Both amino acids are located on the same face of an a-helix. Both structures are taken from editing
complexes: Tgo-Pol (PDB ID, 2xhb) (8) and RB69-Pol (PDB ID 1clq) (12).
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endonuclease V (27). In this publication, steady-state and
time-resolved fluorescence of AP has been used to elucidate
details of the separation of primer-templates by Pfu-Pol.
These investigations have been combined with measure-
ments of the exonucleolysis of AP-containing primers.
X-ray structural data (8) implied key roles for the
archaeal DNA polymerase amino acids at positions 247
(methionine in Pfu-Pol, rather than the arginine found
with Tgo-Pol) and 261 (tyrosine for both Pfu- and Tgo-
Pols) in denaturing primer-templates (Figure 1B). The
role and importance of these two amino acids have been
further probed using site-directed mutagenesis in conjunc-
tion with AP fluorescence and exonuclease assays. Overall,
the results further contribute to understanding of deamin-
ated base recognition by these polymerases.

MATERIALS AND METHODS

Protein purification and mutagenesis

Wild-type Pfu-Pol and variants lacking either 30–50 proof-
reading exonuclease activity (D215A) or deaminated base
recognition (V93Q) were purified as reported previously
(28,29). The amino acids methionine 247 and tyrosine 261
were changed to alanine using a QuickChange� site-dir-
ected mutagenesis kit (Agilent-Stratagene, Stockport) with
VelocityTM DNA polymerase (Bioline, London, UK). The
mutated genes were completely sequenced to ensure the
presence of the desired mutation and an absence of
changes elsewhere. The Pfu-Pol mutants M247A, Y261A
and the double variant M247A/Y261A were purified in
the same manner as the wild-type enzyme. Sodium
dodecyl sulphate–polyacrylamide gel electrophoresis with
Coomassie blue staining indicated a purity of >95% for
all the polymerases used in this publication.

DNA synthesis

All oligodeoxynucleotides were prepared in-house by
standard phosphoramidite chemistry and purified by
high-pressure liquid chromatography (30,31). The
phosphoramidites of AP, fluorescein (6-FAM) and
hexachlorofluorescein (HEX) were purchased from Glen
Research Corporation (Stirling, VI, USA).

Binding of DNA to Pfu-Pol

The dissociation constants (KD) describing the interaction
of Pfu-Pol (wild type and the mutants detailed in the
results section) with DNA were determined using fluores-
cence anisotropy with the HEX-labelled primer-templates
(3,4) described in Table 1. Spectra were measured in 1-ml
volumes at 25�C using two buffers: (i) 10mM
HEPES-NaOH (pH 7.5), 100mM NaCl, 1mM
ethylenediaminetetraacetic acid (EDTA) [used previously
(3,4) and allowing comparison with earlier work] and (ii)
20mM Tris–HCl (pH 8.5), 20mM KCl (the buffer used
for AP fluorescence measurements). DNA was used at a
concentration of 1 nM, and the polymerase from 1 to
50 nM (for uracil-containing DNA) and 10 to 800 nM
(for control DNA lacking uracil and for all measurements
with Pfu-Pol V93Q).

AP steady-state fluorescence

Steady-state fluorescence measurements were performed
using the T (control), U+2 and U+4 primer-templates
shown in Table 1, both free in solution and bound to
Pfu-Pol. Fluorescence emission spectra were measured in
a 100-ml volume (1-cm path length) quartz cuvette using
2 mM primer-template (consisting of 2 mM AP-containing
primer and 4 mM template; native polyacrylamide gel
electrophoresis (15%) confirmed that all the AP-
containing primers were bound to the template under
these conditions) in 20mM Tris–HCl (pH 8.5) and
20mM KCl along with either no added divalent metal
ion or 2mM CaCl2 or 2mM MgCl2. When complexes
were to be measured, 8 mM enzyme was added.
Contaminating divalent metal ions were removed by
adding Chelex resin (Chelex 100 resin, analytical grade,
100–200 mesh, Bio-Rad) to the Tris–KCl buffer and
stock solutions of both polymerase and primer-templates
for at least 10 h before experimentation. The quartz
cuvettes were soaked in 0.1M EDTA, pH 7.5, and
extensively washed with Chelex resin–treated water
before use. Fluorescence spectra were collected at 25�C
using either an SLM-Aminco or a Cary Eclipse
fluorescence spectrophotometer (Varian, Crawley, West
Sussex, UK). Spectra were recorded between 340 and
400 nm using an excitation wavelength of 315 nm. With
free primer-templates, the spectrum found with buffer
alone was subtracted to principally remove the water
Raman band. With protein–DNA complexes, a more
complex correction needed to be applied:

CorrectedðPol-DNAÞspectrum ¼ ðPol-DNAÞ315�

ðPol315 � ðPol-DNAÞ280=Pol280Þ

where Pol and (Pol-DNA) are spectra measured with the
polymerase alone and for a polymerase–DNA complex,
respectively. The subscripts 315 and 280 represent
fluorescence spectra measured at these excitation
wavelengths. The 280 ratio measures protein fluorescence
with and without bound DNA and corrects for the
observed drop in protein fluorescence on interaction
with nucleic acids, a value of �0.65 being observed.

Time-resolved AP fluorescence

Measurements of the time-resolved fluorescence of theU+2
and U+4 primer-templates were carried out using
conditions (buffers, temperature, DNA and enzyme
concentrations) identical to those described for the
steady-state measurements. Fluorescence decays were
acquired by time-correlated single-photon counting using
a Ti-Sapphire femtosecond laser system as excitation
source (25,26). The excitation wavelength was 315 nm,
with pulses of �200 fs at 4.75MHz repetition rate. The
instrument response was �85 ps full width at half
maximum, and the fluorescence spectral bandwidth was
10 nm. Decays were collected at three emission wavelengths
(365, 380 and 395 nm) and fitted to the function:

IðtÞ ¼ B+
X

i

Ai e
�t
�i
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where I(t) is the intensity at time t, Ai is the
fractional amplitude, �i is the fluorescence lifetime of
the i-th decay component and B is the background level
(dark count of the detector). The three decays, at the
different emission wavelength, were analysed globally,
i.e. they were fitted simultaneously with lifetimes, �i, as
common parameters. Quality of fits was assessed by the
�2 parameter (typically a value <1.2 indicates an
acceptable fit) and the randomness of residuals. All the
decay curves required four exponential components to
give a satisfactory fit, as observed in previous studies
(25,26).

Exonuclease assays

Exonuclease assays were performed using the
6-FAM–labelled DNA substrates (10 nM) given in
Table 1. Reactions were carried out at 30�C in 400 ml of
20mM Tris–HCl (pH 8.5), 20mM KCl, 2mM MgCl2,
10 nM primer-template and 500 nM Pfu-Pol, the
polymerase being added last to initiate the reaction. At
appropriate times, 40-ml aliquots were withdrawn and
quenched with an equal volume of stop buffer (95%
formamide, 10mM EDTA, 10mM NaOH, 0.1% orange
G dye) and 1 ml of a 100 mM solution of ‘competitor DNA’
(an exact complement of the template strand but lacking
fluorescein). The samples were denatured by heating to
95�C for 5 min, and then rapidly cooled on ice. The
excess of ‘competitor DNA’ prevents re-hybridization of
the fluorescein primer to the template and ensures that all
the fluorescein primers, and products derived from it,
remain single stranded during analysis (7). Twenty
microlitres of the mixture was loaded for each time
point, and the products resulting from exonuclease
activity resolved using 17% denaturing polyacrylamide
gels. Gels were analysed using a Typhoon scanner (GE
Healthcare), and the amount of material present in each
product band determined using ImageQuant software (GE
Healthcare). Data were fitted to the equation for a first-
order reaction (% substrate remaining=100e�kt+offset;
k= rate constant, t= time) using GraFit (Erithacus
Software, London, UK), allowing determination of rate
constants.

Fidelity of Pfu-Pol

The fidelities of wild-type, M247A and Y261A Pfu-Pol
(exo+) were determined using pSJ2, a lacZ� gene indicator
plasmid, suitable for measuring DNA polymerase
accuracy (32). The gapped derivative of pSJ2 (1 nM) was
fully extended using Pfu-Pol (100 nM) in 20mM Tris (pH
8.0), 10mM KCl, 10mM (NH4)2SO4, 2mM MgCl2, 0.1%
(v/v) Triton X-100, 2 mg bovine serum albumin and
250 mM of each of the four dNTPs. Extension was
carried out at 70�C for 30 min, and after this time, the
mixture was used to transform E. coli TOP10 cells, plated
on LB agar (containing X-gal, IPTG and ampicillin) and
then scored for blue/white colonies as given (32). The
conversion of blue/white colony ratios to mutation
frequency and error rate has also been previously
described (32).

RESULTS AND DISCUSSION

Binding of Pfu-Pol to primer-templates

Determining the AP fluorescence of polymerase–DNA
complexes requires complete binding of the nucleic acid.
Substrate saturation requires a polymerase concentration
at least 10 times the KD describing the interaction, as well
as an excess over DNA. Pfu-Pol binds tightly to uracil-
containing DNA, with low/sub-nanomolar KD values (2–
4). Much weaker affinity is observed for DNA lacking
uracil, and in many experiments, the processivity factor
PCNA was required to ensure full binding of DNA
(7,29). Furthermore, this study makes use of several
Pfu-Pol mutants, which may bind DNA with lesser
affinity than the wild type. Therefore, dissociation
constants characterizing the binding between the primer-
templates used in this study (Table 1) and Pfu-Pol (wild
type and relevant mutants) have been determined.
In a previous study, a KD of 270 nM was measured for a

primer-template similar to the T control used in this
publication, requiring a polymerase concentration of at
least 3 mM for full DNA binding (3). Fortunately,
binding was stronger in the buffer used for AP
fluorescence measurements and rate determinations, with
a KD of 32 nM being found for interaction of the T
primer-template with Pfu-Pol (Figure 2A and Table 2).

Table 1. Oligodeoxynucleotides used in this study

Oligodeoxynucleotide (abbreviation) Oligodeoxynucleotide sequencea

T Primer-template (T) 50-GGGGATCCTCTAGAGTCGACCTGCAGGGC(AP)A-30

30-CCCCTAGGAGATCTCAGCTGGACGTCCCG T TCTTTCGAACAGAGG-50

U+2 Primer-template (U+2) 50-GGGGATCCTCTAGAGTCGACCTGCAGGGC(AP)A-30

30-CCCCTAGGAGATCTCAGCTGGACGTCCCG T TCUTTCGAACAGAGG-50

U+4 Primer-template (U+4) 50-GGGGATCCTCTAGAGTCGACCTGCAGGGC(AP)A-30

30-CCCCTAGGAGATCTCAGCTGGACGTCCCG T TCTTUCGAACAGAGG-50

aThe primer-templates T, U+2 and U+4 were used in AP fluorescence measurements. In each case, 2-aminopurine (AP, shown underlined) is situated
one base in from the 30 end of the primer strand and paired with thymidine. When present, template-strand uracil (U, also shown underlined) is
located either two or four bases in front of the primer-template junction (U+2 and U+4, respectively). The primer-templates were also used to
measure the dissociation constants (KD) and 30–50 proof-reading exonuclease rates with Pfu-Pol B. For KD determination, HEX was present at the 50

end of the template. When exonuclease rates were evaluated, 6-FAM was present at the 50 end of the primer.
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The gain in affinity can be accounted for by a reduction in
ionic strength; 20mM KCl in this investigation and
100mM NaCl in the earlier study. Protein–DNA
interactions are well known to diminish with increasing
salt concentration (33). M247 and Y2161 were changed
to alanine to probe their potential roles in primer-
template strand separation (Figure 1A and B). Both
single mutants and the double variant M247A/Y261A
displayed similar affinities for the control primer-
template as the wild-type enzyme (Figure 2A and
Table 2). Pfu-Pol V93Q, a mutant largely disabled in
uracil recognition (2,5), was observed to bind all primer-
templates (T, U+2 and U+4), with KD values of
�30–40 nM (Table 2 and Supplementary Figure S1). The
dissociation constants shown in Table 2 suggest that
polymerase (wild type, M247A, Y261A and V93Q) levels
of �0.5 mM should lead to complete primer-template
binding.

It is also critical to demonstrate that M247A and
Y261A do not compromise uracil recognition. In the
low-ionic-strength KCl buffer, the U+2 and U+4
primer-templates were bound more tightly than the
control DNA substrates, and the observed sub-nanomolar
KD values could not be accurately determined at the 1 nM
concentration of HEX-labelled DNA used (34).
Therefore, a second set of experiments was carried out
with a 100mM NaCl buffer, previously used for
investigating Pfu-Pol (2–5). As anticipated, the increased
ionic strength allowed determination of KD values for
binding of the U+2/U+4 primer-templates. Each mutant
behaved identically to the wild type, with dissociation
constants of �3.5 nM and 0.5 nM for U+2 and U+4,
respectively (Table 2). The 5-fold preferential binding of
U+4 agrees with previous data (3). Disabling the proof-
reading exonuclease activity (D215A) had no influence on
KD. Interaction with uracil was further probed using

Table 2. Binding constants for Pfu-Pol B (wild type and mutants) to uracil-containing DNAa

Pfu-Pol KD values (nM) for Pfu-Pol binding to primer-templates at two salt concentrationsb

Primer-template T
(KCl)c

Primer-template U+4
(NaCl)

Primer-template U+2
(NaCl)

Single stranded U
DNA (NaCl)c

Single stranded
U DNA (KCl)

Wild type exo+ 32±4 0.45 3.6 4.2±0.20 0.78
Wild type exo�d ND 0.65 3.8 4.5±0.25 0.88
M247A exo+ 31±5 0.58 3.1 4.9±0.35 0.88
M247A exo� ND 0.72 3.7 4.2±0.45 1.1
Y261A exo+ 35±4 0.54 2.9 4.6±0.30 0.89
Y261A exo� ND 0.64 3.9 4.7±0.28 0.95
M247A/Y261A exo+ 29±3 0.48 3.5 4.9±0.45 0.67
M247A/Y261A exo� ND 0.58 3.4 4.7±0.36 1.0
V93Q exo+c 41±3 37±4 28±3 ND ND

aThe primer-templates used are given in Table 1. The uracil-containing single-stranded DNA used was the HEX-containing template used to produce
the U+2 primer-template.
bThe salt concentrations used were as follows:
NaCl: 100mM NaCl, [in 10mM HEPES (pH 7.5), 1mM EDTA]
KCl: 20mM KCl [in 20mM Tris (pH 8.5), 1mM EDTA]
cWith primer-template T in KCl, the KD value was determined three times. Experiments with the single-stranded U DNA in NaCl and all
experiments with V93Q were also performed in triplicate. The average± the standard deviation is given. Other KD values were measured once only.
dExo� variants contained the additional mutation D215A (28).
ND=not determined.
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Figure 2. Binding of Pfu-Pol B to DNA. Interaction of Pfu-Pol exo+ (wild type, M247A, Y261A and M247A/Y261A) with (A) control primer-
template that lacks uracil (T primer-template given in Table 1) and (B) single-stranded uracil-containing oligodeoxynucleotide (the template
component alone of the U+2 primer-template given in Table 1). Titrations were carried out in 20mM KCl (Table 2) using 1 nM oligodeoxy-
nucleotide, and the Pfu-Pol levels shown on the graphs. The KD values describing the binding equilibrium were determined by fluorescence
anisotropy as described (3,4,37). KD values are summarized in Table 2.
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uracil-containing single-stranded DNA, and the KD

values found in the 100mM NaCl buffer are summarized
in Table 2. The wild type and mutants again gave
indistinguishable results, and KD values (just less than
5 nM) agree reasonably with published data (3,4). Using
single-stranded uracil DNA in the KCl buffer gave KD

values slightly less than 1 nM for all Pfu-Pol variants
(Figure 2B and Table 2).

Steady-state fluorescence of free and polymerase-bound
AP primer-templates

The primer-templates used in this study (Table 1) have AP
positioned next to the terminal 30 base of the primer,
anticipated to maximize stacking interactions owing to
the presence of two flanking bases. Therefore, AP
fluorescence was, as expected, very low for the free
primer-templates, all of which (T, U+2 and U+4)
demonstrated near-identical emission spectra with a
maximum around 368 nm (Supplementary Figure S2).
Spectra were barely altered by addition or Ca2+ and
Mg2+. Subsequent experiments measured the AP
fluorescence of polymerase-bound primer-templates
using protein concentrations of 8 mM and DNA levels of
2 mM. This protein concentration is 20-fold greater than
the highest KD (�40 nM found with T-containing control
primer-templates and V93Q, Table 2), ensuring virtually
complete binding of DNA, with only traces expected to
remain free is solution.

AP spectra of primer-templates in complex with Pfu-Pol
(exo+) could be measured providing contaminating
divalent metal ions were removed from buffers, enzyme
and DNA stocks using Chelex resin. With these
precautions, spectra did not show any increase in
fluorescence over time in the absence of added metal or
with 2mM Ca2+, an inert surrogate that does not support
exonuclease activity (35,36) (Supplementary Figure S3).
Omitting the Chelex treatment resulted in a time-
dependent increase in AP fluorescence, arising from the
release of strongly fluorescent free AP owing to traces of
metal activating the 30–50 proof-reading exonuclease. As
expected, addition of Mg2+, an essential co-factor for
exonuclease activity (10,13), resulted in liberation of AP
and a time-dependent increase in fluorescence
(Supplementary Figure S3).

On addition of Pfu-Pol (exo+) to the primer-templates
shown in Table 1, the AP fluorescence observed with U+2
increased markedly, suggesting that AP becomes located
in a less stacked environment. A noticeably smaller
fluorescence enhancement was seen with both T
(control) and U+4, implying less pronounced perturbation
of DNA structure (Figure 3A). When Ca2+ was added, a
small enhancement in fluorescence was seen with all three
primer-templates, although the position of the emission
maxima, just below 370 nm, did not change. As
expected, investigation was not possible with Pfu-Pol
(exo+) in the presence of Mg2+, owing to degradation of
the primer. To assess any influence of this metal ion, AP
fluorescence was measured using Pfu-Pol D215A, a proof-
reading exonuclease–deficient mutant (28). These
experiments were carried out using only the primer-

templates with deaminated bases at +2 and +4, and in
general, the spectra observed were similar to those seen
with Pfu-Pol (exo+). Thus, with Pfu-Pol (exo�), the AP
fluorescence of enzyme-bound U+2 DNA was
significantly greater than that of U+4, and addition of
Ca2+ and Mg2+ caused a slight increase in intensity, with
the two metals behaving similarly (Figure 3B). One slight
difference was observed between exonuclease-proficient
and -deficient enzymes, a small shift in the emission
maximum with U+2: �368 nm for exo+ and �372 nm
for exo�. The spectra shown in Figure 3A and B suggest
more unwinding and adoption of single-stranded
characteristics with U+2 as compared with U+4, results
in agreement with structural data showing unwinding of
two primer bases with a deaminated base at +2 (which
would locate AP in a single strand) and no comparable
distortion with U+4 (i.e. retaining AP in a double-
stranded environment) (5,8). The augmentation of AP
fluorescence seen with U+2 was dependent on interaction
of uracil with its specific binding pocket in the N-terminal
domain. Use of V93Q, a mutant largely unable to interact
with uracil (2,5), resulted in loss of the strong fluorescence
enhancement seen with U+2 and the wild-type enzyme;
rather, the three primer-templates (T, U+2 and U+4) all
gave a similar small fluorescence increase (Figure 3C).
A few studies were carried out with AP at the extreme 30

end of the primer (data not shown), and similar results
were found to those described earlier in the text for
internal AP, i.e. more pronounced fluorescence
enhancement on binding U+2 as compared with U+4 or
T. However, the free primer-templates had higher starting
fluorescence (owing to AP lacking a 30 stacking base), and
any fluorescence enhancement after polymerase binding
was, therefore, less prominent. In contrast, investigations
with T4 polymerase showed that AP at the extreme 30 end
of the primer gave more pronounced fluorescence
enhancement than AP one base in from the terminus (21).

Time-resolved fluorescence of free and polymerase-bound
AP primer-templates

To further clarify the DNA transitions that follow the
binding of uracil-containing primer-templates, use has
been made of time-resolved fluorescence. The AP
fluorescence decay function is an excellent reporter of
local environment, and in favourable instances, can
provide specific structural information, e.g. monitoring
base flipping by DNA methyltransferases (25,26) and
primer-template dynamics in viral family-B DNA
polymerases (15,37).
The decay parameters for free U+2 and U+4 primer-

templates were essentially identical and barely changed by
the addition of Ca2+ or Mg2+ (Table 3). Four lifetime (t)
components, commonly observed for AP in DNA
(19,25,26), were required to give a satisfactory fit,
revealing the existence of at least four conformational
populations. The A factors indicate the fractional
population of individual conformational states. One has
a very short lifetime of �0.05 ns (t1) and accounts for
�80% of the duplex population (A1). This corresponds
to a highly stacked structure in which excited AP is

Nucleic Acids Research, 2013, Vol. 41, No. 4 2471

 at E
dinburgh U

niversity on A
ugust 12, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1364/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1364/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1364/-/DC1
http://nar.oxfordjournals.org/


rapidly quenched by interaction with neighbouring bases.
The longest decay time (8–9 ns) is similar to that of free
AP-riboside (38) and is attributed to AP in an extrahelical
environment, free from interbase quenching. This species
constitutes a very small fraction of the total population,
�3%. The two intermediate decay times, accounting for

�20% of duplexes, are due to imperfectly stacked
conformations in which AP is intrahelical, but quenching
is much less efficient than in the closely stacked structure.

Substantial changes were observed when Pfu-Pol exo+

was added to U+2 (Figure 4A and Table 3). The three
shortest lifetimes (t1, t2 and t3) increased, indicating a
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Figure 3. AP fluorescence emission spectra of primer-templates (U+2, U+4 and a T-containing control) bound to Pfu-Pol B. (A) Spectra observed in
the presence of Pfu-Pol exo+. The three primer-templates (full sequences given in Table 1) are distinguished by colour coding. The solid lines are the
spectra observed in the absence of divalent metals, and the dotted lines in the presence of 2mM CaCl2. (B) Spectra seen with Pfu-Pol exo� (D215A).
Colour coding is used to distinguish U+2 and U+4. The solid, dotted and hatched lines represent, respectively, the spectra measured without metal
ions and with 2mM CaCl2 and 2mM MgCl2. (C) Spectra observed with Pfu-Pol V93Q (a mutation that disables uracil binding) exo+. The three
primer-templates are distinguished by the same colour coding used in panel (A), and these spectra were all recorded in the presence of 2mM CaCl2.
(D) Spectra measured with M247A, Y261A and the double mutant M247A/Y261A (wild type included for comparison). Pfu-Pol variants are
identified by the colour coding shown in the key to the right of the panel. Three spectra were recorded, with each protein bound to primer-templates
containing U+2, U+4 and T (control). The different primer-templates are distinguished using solid, hatched and dotted lines as described in the key.
These spectra were recorded with exo+ variants in the presence of 2mM CaCl2. All the spectra shown in panels A–D used an excitation wavelength
of 315 nm,with DNA and polymerase concentrations of 2 and 8mM, respectively. The black line of low intensity represents the spectrum of a free
primer-template, included for comparative purposes.

Table 3. Fluorescence lifetimes (ti) and their fractional amplitudes (Ai) for the AP-containing primers U+2 and U+4 (see Table 1)

Solution composition t1/ns t2/ns t3/ns t4/ns A1 A2 A3 A4

U+2 0.05 0.51 2.5 8.2 0.78 0.13 0.07 0.03
U+2/Ca2+ 0.05 0.54 2.6 8.4 0.77 0.13 0.07 0.03
U+2/Mg2+ 0.05 0.55 2.8 9.2 0.79 0.12 0.06 0.03
U+4 0.05 0.50 2.6 8.4 0.77 0.13 0.07 0.03
U+4/Ca2+ 0.05 0.52 2.7 8.5 0.77 0.13 0.07 0.03
U+4/Mg2+ 0.04 0.53 2.7 9.0 0.80 0.11 0.06 0.02
U+2/Pfu-Pol (exo+) 0.20 1.0 3.8 8.2 0.35 0.24 0.27 0.15
U+2/Pfu-Pol (exo+)/Ca2+ 0.17 0.99 3.7 8.1 0.28 0.23 0.30 0.19
U+4/Pfu-Pol (exo+) 0.08 0.90 3.0 8.3 0.55 0.24 0.16 0.04
U+4/Pfu-Pol (exo�)/Ca2+ 0.09 1.0 3.5 9.6 0.50 0.26 0.17 0.06
U+2/Pfu-Pol (exo�)/Ca2+ 0.17 0.94 3.6 9.0 0.42 0.29 0.19 0.10
U+2/Pfu-Pol (exo�)/Mg2+ 0.17 0.99 3.7 8.7 0.40 0.23 0.23 0.14
U+4/Pfu-Pol (exo�)/Ca2+ 0.06 0.67 3.6 9.5 0.64 0.12 0.15 0.09
U+4/Pfu-Pol (exo�)/Mg2+ 0.06 0.67 3.5 9.4 0.66 0.11 0.15 0.08
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loss of quenching and a change in local environment. Of
particular significance are the large increase in t1 to 0.2 ns
and the considerable decrease in A1 to 35%. The greater
value of t1 indicates a smaller degree of stacking in this
conformational state, and the decrease in A1 (and
concomitant increases in A2–A4) shows a large transfer
of duplex population to more poorly stacked states.
These effects are consistent with unwinding of the
duplex seen structurally with primer-templates containing
hypoxanthine at+2 (8). When Ca2+was present, even less
of the most highly stacked conformation was seen, with A1

reduced to 28%. Much less perturbation was observed for
U+4 in complex with the exo+ polymerase. Noticeably,
the effect on the shortest decay component, highly
stacked AP, was markedly different than for U+2. The
shortest decay time increases to 0.08/0.09 ns, much less
than 0.17/0.20 ns seen with U+2, and 50–55% of the
population persists in this conformation (cf. 28–35%
with U+2). The values of t2, t3 and t4 are similar in
both complexes, indicating that AP in less stacked or
extrahelical states experiences a similar environment in
both cases, as might be expected. Overall, the decay
parameters for U+4 bound to the polymerase indicate a
modest distortion of the duplex, resulting in some transfer
from the best stacked conformations (t1) to poorly stacked
or extrahelical states, but with �50% (A1) remaining in
the well-stacked state. Again, these data agree with a
polymerase–U+4 structure, where no major changes in
the duplex region of the primer-template are observed (5).

Experiments were also carried out with Pfu-Pol exo�

(Figure 4B and Table 3), and in general, the fluorescence
lifetime parameters follow the trends discussed earlier in
the text for exo+, confirming that greater DNA distortion
occurs with U+2 than U+4. This is most clearly illustrated
by the parameters for the most highly stacked state; thus,
the t1 lifetime is longer for U+2 (0.17 ns) than U+4
(0.06 ns), and the occupancy of this state is less for U+2
(40–42%) than U+4 (64–66%). These spectra were
recorded with either Ca2+ or Mg2+, which behaved
similarly, suggesting the two metals influence the

protein–DNA interaction in a near-identical manner.
Close comparison of the decay parameters for exo�

(Figure 4B) with those of exo+ (Table 3) shows that the
exo� variant induces somewhat less distortion of the U+2
primer-template. Higher occupancy (40–42%) of the best-
stacked state persists in the exo� U+2 complex (with Ca2+

or Mg2+), a value reduced to 28% for the analogous
complex with exo+. Although both the proof-reading–
proficient and –deficient Pfu-Pol variants can unwind
U+2-containing primer-templates, exo+ seems slightly
more potent.

Exonucleolysis of AP-containing primer-templates

Previous results from our group showed that U+2 primer-
templates are more susceptible to proof reading by Pfu-
Pol than U+4 (7). However, the increase in exonuclease
activity with U+2, relative to U+4, depended on the base
pairs in the double-stranded region adjacent to the primer-
template junction. When the last two base pairs were both
G:C, a stimulation (ratio of the exonuclease rates: U+2/
U+4) of just more than 200 was observed. With two A:T
base pairs, this factor was reduced to just more than 100
(7). The fluorescence results described earlier in the text
with the AP-containing primer-templates suggest
unwinding in the case of U+2 but not U+4. Therefore, a
faster rate of exonucleolytic degradation of the U+2
primer, compared with U+4, is anticipated. However,
the duplex regions of both primer-templates terminate
with an AP:T followed by an A:T base pair (Table 1).
AP:T base pairs are marginally less stable than A:T (39),
and in view of the influence of base pair stability on
exonuclease rates, it was decided to confirm the
degradation of the primer-templates listed in Table 1.
Figure 5 shows the results obtained when U+2, U+4

and a control primer-template (T) lacking uracil were
subject to proof-reading exonucleolysis by Pfu-Pol. The
low-ionic-strength Tris–KCl buffer was used, such that
the protein concentration (500 nM) was in excess of
DNA (10 nM) and sufficiently more than the weakest
KD (32 nM for the T primer-template) (Table 2), to
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Figure 4. Graphical representation of the AP fluorescence decay parameters [fractional amplitude (A factor) versus lifetime (t)] for uracil-containing
primer-templates. (A) Parameters observed with Pfu-Pol exo+ bound to U+2 and U+4 in the presence and absence of Ca2+. (B) Parameters observed
with Pfu-Pol exo� (D215A) bound to U+2 and U+4 in the presence of Ca2+ and Mg2+. For both A and B, the excitation wavelength was 315 nm,
and the concentrations of primer-template and Pfu-Pol were 2mM and 8mM, respectively. The free DNA trace given is that found for U+2 in the
presence of Ca2+, but all free primer-templates showed near-identical parameters (Table 3).

Nucleic Acids Research, 2013, Vol. 41, No. 4 2473

 at E
dinburgh U

niversity on A
ugust 12, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


ensure full binding of the DNA. In contrast to earlier
studies, the addition of PCNA was, therefore, not
required to guarantee complete saturation (7). The
degradation patterns were analysed by gel electrophoresis
(Figure 5A–C), and the amount of starting material
remaining at various times (intensity of starting material
band/sum of the intensity of all bands) was determined.
This data were used to generate plots of starting material
remaining versus time (Figure 5D and E) and,
subsequently, to determine the rate constant associated
with the disappearance of starting material for each
reaction (Table 3). The AP primer-template with U at
the +2 position is hydrolysed 14-fold more rapidly than
U+4 (Table 4), an enhancement less than seen previously
for DNA with standard base pairs near the primer-
template junction (7). However, the results seen here
continue the trend that ‘weaker’ base pairs lead to a less
profound difference in the rates at which U+2 and U+4
primer-templates are degraded. The control primer-
template (T), lacking uracil, is degraded at a rate
intermediate between U+2 and U+4 (Table 4), similar to
previous observations (7).

Investigation of the roles of arginine 247 and tyrosine 261
in primer-strand unwinding

As discussed in the introduction, and shown in Figure 1A
and B, structural studies appeared to show that R247 and
Y261 play an important role in primer-template strand

separation. The equivalent amino acids in Pfu-Pol,
M247 and Y261 were individually changed to alanine to
probe their functions. A double mutation, in which both
amino acids were altered to alanine, was also prepared.
The influence of the three mutations on the steady-state
fluorescence of the AP-containing DNA was determined.
These experiments were carried out with Pfu-Pol
(exo+) in the presence of the non-activating metal
Ca2+, representing the nearest inactive mimic of the
exonuclease-proficient polymerase-DNA-Mg2+ ternary
complex. Binding to the U+2 primer-template, by all
three mutant polymerases (M247A, Y261A and M247A/
Y261A), gives rise to greater enhancement of AP
fluorescence than seen with U+4 or the T control, with
the latter pair giving roughly the same small increase
(Figure 3D). M247A behaves in an identical manner to
the wild-type enzyme, with both polymerases producing
nearly superimposable spectra with all three primer-
templates and, consequently, matching increases in AP
fluorescence on binding U+2. In contrast, the fluorescent
enhancement seen with Y261A, with all three primer-
templates, is less than that observed with the wild type:
by �30% for U+2 and 45% for U+4 and T (although the
latter two are difficult to determine accurately owing to
low fluorescence intensities). These results suggest that
amino acid Y261 plays a general role in unwinding
primer-templates or maintaining strand separation
during the switch from polymerization to exonuclease
mode that precedes proof-reading activity. The spectra

100

50

0

S
ta

rt
in

g 
m

at
er

ia
l

re
m

ai
ni

ng
 (

%
) U+4 (gel B)

T (gel A)

0           200         400        600        800

Time (s)

Time (s)

S
ta

rt
in

g 
m

at
er

ia
l

re
m

ai
ni

ng
 (

%
)

100

50

0

U+2 (gel C)

0                40                 80              120

 0       5     10     20     30    60   120    240  360
Time (s)T

U+4
0     0.25  0.5      1       2       4      6       12    24

Time (minutes)

0       2      4       8      15    30     60     90   120
Time (s)U+2

A

B

C

D

E

Figure 5. Hydrolysis of AP-containing primer-templates by the proof-reading exonuclease activity of wild-type Pfu-Pol B. (A) T primer-template;
(B) U+4 primer-template; (C) U+2 primer-template. Panels A–C show the degradation of the 6-FAM–labelled primer strand (starting material show
by the arrows) with time, as assessed using gel electrophoresis. Where gels have been cropped, no smaller degradation products were visible.
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summarized in Table 4.
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seen with the double mutant M247A/Y261A are almost
identical to those observed for Y261A alone and can be
simply accounted for by the change at amino acid 261.

The steady-state fluorescence data seen with the mutant
polymerases have been complemented by determining the
rate constants for proof-reading exonuclease activity
(Supplementary Figure S4 and Table 4). With all
primer-templates (U+2, U+4 and T control), changing
methionine 247 to alanine has very little influence on
hydrolysis rates, which were almost identical to those
seen with the wild-type polymerase. With Y261A, a
noticeable drop in the rate constants for exonuclease
activity (�2- to 3-fold) was noticed with the U+4 and T
substrates. However, with U+2, Y261A and the wild type
showed similar activity. Finally, an in vitro DNA
polymerase fidelity assay (32) has been used to measure
the accuracy with which the mutants incorporate dNTPs.
As summarized in Table 5, the wild type and M247A have
similar error rates of �1.6� 10�6. Y261A has noticeably
lower fidelity, with an error rate of �4� 10�6, �2.5-fold
more error prone than the wild type.

CONCLUSIONS

This publication uses steady-state and time-resolved
fluorescence of AP-containing DNA to demonstrate
pronounced primer-template separation when uracil is
encountered at the +2 position by archaeal family-B
DNA polymerases. Both techniques show an increase in
AP fluorescence on protein binding, consistent with
diminished stacking of the modified base as it moves
from a double- to a single-stranded environment
(Figures 3 and 4 and Table 3). The fluorescence decay
parameters provide convincing evidence for a decrease in
the amount of double-stranded DNA, manifested by
marked weakening of interbase stacking (as indicated by
the increase in the lifetime of the shortest-lifetime
component, t1) and a large transfer of population from
highly stacked to poorly stacked conformations. The
fluorescence data found with the U+2 primer-template,
inferring strand separation, agree with structural studies
(8). In contrast, a smaller increase in AP fluorescence
intensity with only a slight increase in the lifetime of the
shortest component (t1), together with the persistence of a
high population of strongly stacked states, is seen with

U+4 (and T control) primer-template-enzyme complexes,
suggesting less profound DNA distortion, again in
agreement with X-ray crystallography (5). Kinetic
measurements showed the AP-containing U+2 primer-
template to be more susceptible to proof-reading
exonuclease activity than U+4. DNA unwinding is a
pre-requisite for proof reading (9,13), indicating that the
degree of strand separation seen with U+2 and U+4
correlates with the rate at which they are subject to
exonucleolysis.
Many steady-state and time-resolved measurements

have been carried out with T4 and RB69 polymerases
using AP-containing DNA (15,20,21,37), but exact
comparison with Pfu-Pol is not straightforward. All
polymerases belong to the B family and possess obvious
sequence and structural homology, even though the viral
enzymes do not interact with uracil (2). Studies with the
viral polymerases used primers containing AP at the
extreme 30 end, a different location to that used here,
and time-resolved experiments (incapable of resolving
lifetimes <100 ps) were fitted to three, rather than four,
decay components (15,20,21,34). With T4 polymerase,
stronger fluorescence enhancement was seen with AP at
the primer terminus compared with the �1 location (21),
observations that are reversed with Pfu-Pol. For the viral
enzyme, an aromatic amino acid intercalates between the
two penultimate primer bases and has been suggested as
the cause of the fluorescence increase with terminal AP
(21). Archaeal enzymes lack an equivalent intercalating
amino acid (5,8), suggesting subtle differences in the
mechanism used for strand separation. In the case of T4
and RB69 polymerases, more pronounced AP
fluorescence enhancement was seen with proof-reading
exonuclease–proficient variants (15,20), whereas Pfu-Pol
exo+ and exo� gave similar increases. In general, binding
of viral polymerases enhances the steady-state
fluorescence of AP primer-templates, and time-resolved
experiments demonstrate a reduction in the population
of shorter-lifetime components (15,20,21,37), interpreted
as evidence for increased strand separation on formation
of exonuclease-competent complexes. The conclusions
drawn with viral polymerases agree with the proposal

Table 5. Error rates of Pfu-Pol B variants determined using pSJ2a

Polymerase Number
of coloniesb

Number of
mutant (white)
colonies

Corrected
mutation
frequencyc

Error
rated

Wild type (exo+)e 25 700 11 3.2� 10�4 1.6� 10�6

M247A (exo+) 34 783 16 3.5� 10�4 1.7� 10�6

Y261A (exo+) 15 429 14 8.0� 10�4 4.0� 10�6

aFor full details, see (32).
bSum of three independent experiments, each consisting of five repeats.
cThe mutation frequency is the ratio of white colonies to total colonies.
The values given have been corrected by subtracting the background
mutation frequency of 1.1� 10�4 observed for gapped pSJ2 (32).
dThe error rate is the incidence at which the polymerase incorporates
incorrect dNTPs per templating base. For full details of how the
mutation frequency is used to derive the error rate, see (32).
eTaken from (32).

Table 4. Rates of 30–50 proof-reading exonuclease activity seen with

Pfu-Pol B (wild type and mutants) and the DNA substrates given in

Table 1

Primer-templatea Exonucleolysis rate
constants (min�1) of Pfu-Pol variantsb

Wild type M247A Y261A

T 2.7±0.1 2.8±0.04 1.2±0.04
U+2 9.9±0.9 9.9±2.0 9.8±0.6
U+4 0.7±0.1 0.6±0.1 0.2±0.06

aThe DNA substrates used are listed in Table 1.
bRates± standard deviation from at least three observations.

Nucleic Acids Research, 2013, Vol. 41, No. 4 2475

 at E
dinburgh U

niversity on A
ugust 12, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1364/-/DC1
http://nar.oxfordjournals.org/


that U+2 primer-templates undergo greater strand
separation than U+4 (and control primer-templates),
after Pfu-Pol binding.
Proof reading normally takes place after dNMP

misincorporation, the resulting mismatched base pair
being prone to unwinding, thus favouring strand
separation that necessarily precedes exonucleolysis (13).
No mismatched base pairs are present during uracil
recognition, requiring unravelling of a fully Watson–
Crick base-paired primer-template to initiate proof-
reading activity. To elucidate features contributing to
the unwinding of a stable duplex, attention has
focussed on two amino acids, suggested to be important
by structural studies (8). The amino acid at position 247
(arginine in Tgo-Pol, methionine in Pfu-Pol) is at the tip
of the b-hairpin, a structural element implicated in
primer-template strand separation (12–16). R247 stacks
against one of the single-stranded template bases that
arise after partial primer-template denaturation (Figure
1B) and may act as a wedge to pry apart the strands (8).
A second amino acid, tyrosine 261, is located on an a-
helix and positioned between separated primer and
template bases (Figure 1B), possibly preventing re-
annealing (8). Both M247 and Y261 have been converted
to alanine, and a double mutant has also been prepared.
In steady-state AP fluorescence, M247A showed almost
identical properties to the wild type (Figure 3D). In
contrast, Y261A resulted in a smaller increase in AP
fluorescence with all three primer-templates (Figure
3D). The double mutant behaved almost identically to
Y261A and was not investigated further. The proof-
reading activity of M247A was indistinguishable from
the wild-type enzyme; with Y261A, a drop in rate was
observed with the T control and U+4, but not with U+2
(Table 4). It is concluded that M247 plays no role in
strand separation and proof reading during uracil
recognition. Most likely the long side chain of amino
acid 247 is flexible and the position of R247 in the
structure of Tgo-Pol (Figure 1A and B) (5) is fortuitous,
misleadingly implying an important function. A recent
structure of an RB69 repair complex has indicated that
R260 (the corresponding amino acid) does not contact
either the primer or template strand (40). In contrast,
Y261 plays an important role, with its removal leading
to less strand separation and, with the T control and
U+4, slower proof reading. As primer-template
unwinding appears to be the rate-limiting step for
proof reading (13), it follows that altering an amino
acid that plays an important role in this process should
reduce 30–5’ exonucleolysis. With U+2, strand separation
is highly favoured and may no longer be rate limiting in
the overall proof-reading cycle. Such a change in the
rate-limiting step may account for Y261A degrading
the U+2 primer-template at the same rate as the wild-
type enzyme. Confirmation of the different behaviours of
M247 and Y261 comes from an in vitro fidelity assay.
M247A is as accurate as the wild type, while Y261A
makes 2.5 times as many mistakes (Table 5). This
experiment is conceptually similar to in vivo fidelity
determination, used to investigate proof reading in viral
polymerases (13,41).

Further information about the significance of Pfu-Pol
M247 and Y261 is available from sequence comparisons.
The b-hairpin amino acid at position 247 does not show
pronounced retention even within the thermococcales
order, and when the wider euryarchaeotal phylum is
considered, no conservation can be discerned (Table 6).
It is difficult to see how the small amino acids, often
found naturally at this position (equivalent to the
alanine mutation), could fulfil the wedge function
previously proposed for the separation of primer-
template strands (5). As mentioned previously, the
equivalent amino acid in RB69 polymerase (R260)
appears to be unimportant; rather, two alternative b-
hairpin amino acids, M256 and Y257, are sandwiched
between the primer and template and appear to play a
key role in strand separation (40). Similarly the analogue
of Pfu-Pol M247 observed in T4 polymerase (K257) can
be changed to several amino acids with little change in
fidelity (15). The observation that the b-hairpin tends to
show conservation at the structural level, rather than in
amino acid sequence, (13,14) may be critical. The motif
may act as a whole to partition primer and template
strands; therefore, changes to particular amino acids,
such as to the amino acid at position 247 in archaeal
polymerase B, may have marginal influence. Much
higher conservation is seen with the a-helix–located
amino acid at position 261 (Table 6). Considering the
euryarchaea as a whole, this amino acid is invariably an
aromatic or a large aliphatic entity. The proposed role of
amino acid 261 in keeping apart separated primer-
template strands could easily be fulfilled by any of these
large hydrophobic side chains. The nature of this amino
acid is retained for almost all family-B polymerases (data
not shown). With the well-characterized polymerases from
phages RB69 and T4, the equivalent amino acids are Ile
274 and Leu 271, respectively. RB69 Ile 274 shows
pronounced spatial overlap with Tgo-Pol Y261, both at
the amino acid and a-helix secondary structure level
(Figure 1C). Several RB69 DNA structures show that Ile
274 is near the separation point of the primer and template
strands (12,41,42). With T4 polymerase, insertion of an
additional leucine adjacent to Leu 271 decreases fidelity,
indicating a role for this region (13,43). However, as the
change is not a direct substitution of Leu 271, it is difficult
to decipher the role of the amino acid itself.

In summary, this publication has used AP fluorescence
to demonstrate that archaeal DNA polymerases denature
primer-templates and initiate proof reading as they

Table 6. Identity of amino acids at position 247 and 261 in

euryarchaeal family-B DNA polymerases

Species Amino
acid 247

Amino
acid 261

Thermococcales
(33 members)

R19, S7, M6, G1 Y25, F8

Euryarchaea
(minus thermococcales)
(78 members)

N12, A10, F9, Q9, R8,
I7, E5, G4, L4, V4,
H2, K1, S1, L1, M1

Y42, L23, W7,
F5, V1
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approach template-strand uracil. Tyrosine 261 has been
shown to contribute to DNA unwinding and fidelity,
although its influence is not specific for uracil recognition,
and rather, the amino acid acts generally with all primer-
templates. The capture of uracil by the deaminated base–
binding pocket is, almost certainly, the source of binding
energy used to unwind the fully complementary primer-
template (7). Overall, the enzyme performs a remarkable
job in proof reading, rather than extending, a fully
Watson–Crick base-paired primer-template, preventing
copying of template-strand uracil and the transmission
of fixed mutations to progeny.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–4.
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crystallographic study of the role of sequence context in
thymine glycol bypass by a replicative DNA polymerase
serendipitously sheds light on the exonuclease complex. J. Mol.
Biol., 412, 22–34.

41. Reha-Krantz,L.J. (1995) Use of genetic analyses to probe
structure, function, and dynamics of bacteriophage T4 DNA
polymerase. Methods Enzymol., 262, 323–331.

42. Hogg,M., Wallace,S. and Doublié,S. (2004) Crystallographic
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