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Relative contributions of six lifestyle- 
and health-related exposures to epigenetic 
aging: the Coronary Artery Risk Development 
in Young Adults (CARDIA) Study
Kyeezu Kim1, Yinan Zheng1, Brian T. Joyce1, Hongmei Jiang2, Philip Greenland1, David R. Jacobs Jr.3, Kai Zhang4, 
Lei Liu5, Norrina B. Allen1, John T. Wilkins1, Sarah N. Forrester6, Donald M. Lloyd‑Jones1 and Lifang Hou1* 

Abstract 

Background: DNA methylation‑based GrimAge acceleration (GrimAA) is associated with a wide range of age‑related 
health outcomes including cardiovascular disease. Since DNA methylation is modifiable by external and behavioral 
exposures, it is important to identify which of these exposures may have the strongest contributions to differences in 
GrimAA, to help guide potential intervention strategies. Here, we assessed the relative contributions of lifestyle‑ and 
health‑related components, as well as their collective association, to GrimAA.

Results: We included 744 participants (391 men and 353 women) from the Coronary Artery Risk Development in 
Young Adults (CARDIA) study with blood DNA methylation information at CARDIA Exam Year (Y) 20 (2005–2006, 
mean age 45.9 years). Six cumulative exposures by Y20 were included in the analysis: total packs of cigarettes, total 
alcohol consumption, education years, healthy diet score, sleep hours, and physical activity. We used quantile‑based 
g‑computation (QGC) and Bayesian kernel machine regression (BKMR) methods to assess the relative contribution 
of each exposure to a single overall association with GrimAA. We also assessed the collective association of the six 
components combined with GrimAA. Smoking showed the greatest positive contribution to GrimAA, accounting for 
83.5% of overall positive associations of the six exposures with GrimAA (QGC weight = 0.835). The posterior inclusion 
probability (PIP) of smoking also achieved the highest score of 1.0 from BKMR analysis. Healthy diet and education 
years showed inverse contributions to GrimAA. We observed a U‑shaped pattern in the contribution of alcohol con‑
sumption to GrimAA. While smoking was the greatest contributor across sex and race subgroups, the relative contri‑
butions of other components varied by subgroups.

Conclusions: Smoking, alcohol consumption, and education showed the highest contributions to GrimAA in our 
study. Higher amounts of smoking and alcohol consumption were likely to contribute to greater GrimAA, whereas 
achieved education was likely to contribute to lower GrimAA. Identifying pertinent lifestyle‑ and health‑related 
exposures in a context of collective components can provide direction for intervention strategies and suggests which 
components should be the primary focus for promoting younger GrimAA.
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Introduction
Lifestyle- and other health-related exposures such as 
smoking, alcohol consumption, education, diet, and 
physical activity are associated with age-related health 
outcomes including all-cause mortality [1], cancer [2–4], 
and cardiovascular disease (CVD) [5–7]. Lifestyle- and 
health-related exposures can also trigger epigenetic mod-
ifications, which in turn affect expression of genes related 
to age-related health outcomes [8]. Growing evidence 
suggests that components such as smoking, alcohol con-
sumption, education, and physical activity are associated 
with accelerated- or decelerated epigenetic age [9–11]. 
Epigenetic age, an alternative to chronological age, was 
proposed and developed to overcome the limitation of 
use of chronological age due to inter-individual vari-
ability in age-related biological changes as well as health-
related exposures [12, 13].

Epigenetic marks represented by DNA methylation 
accumulate with lifestyle and environmental exposures 
over time [8, 14]; thus DNA methylation-based biological 
age (epigenetic age) has been suggested as a useful bio-
marker of age-related conditions [12, 15]. Several epige-
netic age estimates have been proposed to date, including 
extrinsic and intrinsic epigenetic age acceleration (EEAA 
and IEAA, respectively), and more recently, Levine et al.’s 
PhenoAge and Lu et  al.’s GrimAge [16–19]. Typically, 
these epigenetic age estimates represent biological/epige-
netic age as a summary measurement based on numbers 
of age-related CpGs (353 CpGs for IEAA, 71 for EEAA, 
513 for PhenoAge, and 1030 for GrimAge, respectively) 
[16–19]. Prior studies showed that accelerated epige-
netic age (older epigenetic age than chronological age) is 
associated with age-related health outcomes such as dia-
betes, metabolic syndrome, cancer incidence and mortal-
ity, CVD, and all-cause mortality [19–23]. Studies also 
suggested that PhenoAge acceleration (PhenoAA) and 
GrimAge acceleration (GrimAA) are more powerful than 
older epigenetic aging estimators in assessing associa-
tions with health outcomes [19, 24]; however, the num-
ber of studies with associations of upstream lifestyle- and 
health-related exposures during young adulthood with 
PhenoAA and GrimAA measured in middle age are still 
limited [25]. Therefore, the extent to which epigenetic 
aging estimators capture information on prior lifestyle 
and other health-related risk factors remains incom-
pletely understood.

Since many lifestyle- and health-related exposures 
correlate with one another [11], assessing multiple 

components as a combination is important because of 
potential synergistic interactions [1], particularly when 
studying chronic disease risks [1, 26]. Most studies of life-
style and epigenetic age acceleration (EAA) have focused 
on single lifestyle- or health-related behaviors or expo-
sures (e.g., smoking, alcohol consumption, education, 
etc.) and evaluated the association with EAA using tradi-
tional regression models, assuming independence among 
the components and additivity of effects on the outcome 
[9, 10], which may lead to confounded associations. EAA 
is a reflection of multiple factors comprising various life-
style and environmental exposures, and the joint effect 
of multiple components on EAA may be greater or lesser 
than the sum of a single exposure’s effect. Furthermore, 
it is challenging to identify impactful exposures to EAA 
for public health intervention strategies without consid-
ering the coexistence of other components with complex 
relationships. To overcome these challenges, we adapt 
two advanced statistical approaches: quantile-based 
g-computation (QGC) [27] and Bayesian kernel machine 
regression (BKMR) [28]. Designed to deal with multiple 
exposures simultaneously, the strengths of the two meth-
ods include identification of relative contributions for 
each exposure to the collective association with the out-
come [27, 28].

In this study, we aimed to investigate the collective 
association and relative contribution of lifestyle- and 
health-related exposures with epigenetic aging bio-
markers. We aimed to assess six established exposures 
and health behaviors as components in a model of their 
relative contributions to the collective association with 
EAA. Using a subpopulation with DNA methylation 
information from the Coronary Artery Risk Develop-
ment in Young Adults (CARDIA) study, we examined 
the collective association of the combination of lifestyle- 
and health-related components with EAA (represented 
by PhenoAA and GrimAA), as well as the relative con-
tributions of individual components to the collective 
association.

Results
Distribution of participants’ characteristics
Table 1 represents the distribution of study participants’ 
characteristics. A total of 744 participants (391 men and 
353 women) were included in the study, consisting of 304 
Black participants and 440 White participants. The mean 
age of study participants was 45.9 (standard deviation 
[SD]: 3.5) years. Figure 1 displays Spearman correlations 

Keywords: DNA methylation, Epigenetic aging, Accelerated epigenetic age, Lifestyle‑ and health‑related 
components
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among the six lifestyle- and health-related exposures. The 
strongest correlation was shown between diet and educa-
tion (R: 0.36), followed by the correlation between smok-
ing and alcohol consumption (R: 0.33). The correlations 
by race- and sex subgroups were generally consistent 
with the results from all participants (Additional file  1: 
Fig. S1).

Relative contribution of six exposures and collective 
association
Table 2 shows the relative contribution of each exposure, 
and the collective association of all six components, to 
GrimAA. For the collective association between the six 
components and GrimAA using QGC, we observed an 
average of 5.15 years greater GrimAA per quartile differ-
ence in the six components (beta: 5.15, 95% CI 4.16, 5.86). 
In QGC, smoking showed the greatest relative contribu-
tion to greater GrimAA, accounting for 83.5% of contri-
bution to the positive association (weight: 0.835). Alcohol 
consumption (weight: 0.129), sleep hours (weight: 0.010), 
and physical activity (weight: 0.024) also contributed 
to the positive association with GrimAA, whereas diet 
quality (weight: − 0.537) and education (weight: − 0.463) 
contributed to an inverse (and favorable) association 
with GrimAA. The estimate of collective association 
from BKMR was 3.62 years, and the 95% credible inter-
val (CrI) did not include the null (95% CrI 1.93, 5.22). 
Using BKMR, we observed that smoking showed the 

greatest contribution with highest PIP (PIP: 1.000), fol-
lowed by alcohol consumption (PIP: 0.997), education 
(PIP: 0.812), diet quality (PIP: 0.310), sleep hours (PIP: 
0.091), and physical activity (PIP: 0.040) in GrimAA. Fig-
ure 2 represents the patterns of single exposure associa-
tions with GrimAA from BKMR analysis among the total 
population. We observed a U-shaped pattern with alco-
hol consumption and GrimAA. The patterns with other 
components were generally consistent with the direc-
tion of associations shown in QGC analysis. Diet quality 
showed a linear and negative association with GrimAA. 
Education showed an overall negative association with 
GrimAA. Smoking showed non-monotonic response 
functions, but the highest levels of smoking displayed a 
positive association with GrimAA. The patterns for phys-
ical activity and sleep hours were plateaus, consistent to 
the minimal PIPs of the two components in Table 2.

The results from PhenoAA among total participants 
are presented in Additional file 1: Table S1. The average 
collective association between the collective compo-
nents and PhenoAA from QGC was 1.64 years (95% CI 
0.15, 3.13), per quartile difference in the six components. 
Using QGC, we observed that smoking (weight: 0.861) 
and diet quality (weight: − 0.690) showed the greatest 
positive and negative weights, respectively. The collective 
association from BKMR was 1.30 years; however, the 95% 
CrI included the null (95% CrI − 0.89, 3.49). In BKMR, 
smoking showed the highest PIP of 0.955.

Table 1 Distributions of six cumulative lifestyle‑ and health‑related components among study participants from CARDIA study

SD standard deviation, IQR interquartile range

Variables Description Mean (SD) IQR

Age Chronological age, at Y20 45.9 (3.5) 5.7

Sex, N (%) Men 391 (52.6)

Women 353 (47.5)

Race, N (%) Black participants 304 (40.9)

White participants 440 (59.1)

Smoking Total packs of cigarettes by Y20 (for former and current smokers) 1717.5 (3348.4) 1764.0

Smoking status at Y20, N (%) Never 459 (61.7)

Former 147 (19.8)

Current 138 (18.6)

Alcohol consumption Total grams of alcohol consumption by Y20 227.5 (341.6) 298.0

Diet Average Healthy Eating Index score, over Y0, Y7, and Y20 67.6 (11.8) 15.9

Education Total years of education, at Y20 15.1 (2.5) 3.0

Physical activity Cumulative total intensity score by Y20 350.9 (279.0) 340.0

Sleep hours Average sleeping hours in the past 30 days, at Y15 and Y20 6.7 (1.3) 1.3

BMI Body mass index (kg/m2), at Y20 29.3 (6.4) 7.5

Field center, N (%) Birmingham 197 (26.5)

Chicago 174 (23.4)

Minnesota 181 (24.3)

Oakland 192 (25.8)
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Results from the stratified analysis by study subgroups
Table  3 shows the results from the subgroup-specific 
analyses, stratified by participants’ smoking status at Y20, 
sex, and race, respectively.

Results by smoking status: In QGC analysis, the 
collective association of the six components with 

GrimAA from QGC among ever smokers was 1.47 
(95% CI 0.39, 2.55). Smoking showed the greatest con-
tribution (55.9%) to the positive association with Gri-
mAA with the highest positive weight (weight: 0.559) 
among ever smokers. Education showed the greatest 
contribution (55.5%) to the inverse association with 

Fig. 1 Spearman correlations among six cumulative lifestyle‑ and health‑related components

Table 2 Relative contributions of six components to GrimAA in the CARDIA sample from QGC and BKMR

Models were adjusted for race, sex, body mass index (BMI), and field center; CI confidence interval, CrI credible interval, QGC quantile-based g-computation, BKMR 
Bayesian kernel machine regression, PIPs posterior inclusion probabilities. The positive and negative weights from QGC represents the proportion of the effect 
estimate for each component (sum up to 1 or − 1 for the same direction); The PIP reflects the ranked importance of each component in association with GrimAA. † 
Change in mean GrimAA per one quartile change of all six components for QGC; change in mean GrimAA when all of the six lifestyle components are fixed at their 
75th percentile compared to when the six lifestyle components are at their 25th percentile for BKMR

Lifestyle components by Y20 Weights from QGC PIPs from BKMR

Alcohol consumption 0.129 0.997

Diet quality  − 0.537 0.310

Education years  − 0.463 0.812

Physical activity 0.024 0.040

Sleep hours 0.010 0.091

Smoking 0.835 1.000

Collective association† 5.15 (95% CI 4.16, 5.86), p < 0.001 3.62 (95% CrI 1.93, 5.22)
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GrimAA (weight: − 0.555), followed by diet quality 
(weight: − 0.445) among ever smokers. Using BKMR, 
the collective association of the six components with 
GrimAA was 3.08 years, and the 95% credible interval 
(CrI) did not include the null (95% CrI 1.13, 5.02). In 
BKMR among ever smokers, smoking showed the high-
est PIP (PIP: 1.000), followed by alcohol consumption 
(PIP: 0.868), education (PIP: 0.676), and diet quality 
(PIP: 0.471). The collective associations using QGC 
and BKMR presented null associations among never 
smokers. Among never smokers, alcohol consump-
tion showed the greatest contribution (40.5%) to the 
positive association with GrimAA with a weight of 
0.405. Diet quality showed the greatest negative weight 
(weight: − 0.762) among never smokers. In BKMR, the 

PIP for the five other components in never smokers 
were relatively low, ranging from 0.086 to 0.429. In the 
separate analyses by grouping participants into current, 
former, and never smokers, the relative contributions of 
components between current and former smokers were 
generally consistent (data not shown).

Results by sex: In the analysis stratified by sex 
(Table  3), we observed positive collective associations 
between the six components and GrimAA using QGC 
in both men and women, as average 6.67  years higher 
GrimAA per quartile difference (95% CI 5.43, 7.91) 
for men and 3.18  years higher GrimAA per quartile 
change (95% CI 1.92, 4.44) for women, respectively. 
Smoking showed the greatest contribution to the posi-
tive association with GrimAA in both sexes (weights: 

Fig. 2 The exposure–response pattern (blue lines) with 95% confidence intervals (gray shade) for each lifestyle‑ and health‑related exposure) with 
other exposures fixed at median). The X‑axis represents standardized levels (mean = 0, standard deviation [SD] = 1) of six lifestyle‑ and health‑related 
exposures. The Y‑axis represents GrimAA, in years. A GrimAA of zero (dotted red line) indicates an epigenetic age equal to chronological age. 
GrimAA less than zero (below the dotted red line) indicates younger epigenetic age compared to chronological age
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0.798 for men and 0.907 for women, respectively) using 
QGC. In men, education years showed the greatest 
contribution to the inverse association with GrimAA 
(weight: − 0.776). In women, diet quality showed the 
greatest negative contribution to the association with 
GrimAA (weight: − 0.692). In BKMR, the collective 
associations between the collective lifestyle and Gri-
mAA using BKMR did not include the null in either 
sex stratum, with an average increase of 5.53  years in 
GrimAA (95% CrI 3.78, 7.27) for men and 2.52  years 
(95% CrI 0.74, 4.28) for women, respectively. Smoking 
showed the highest PIP for GrimAA in both sexes (PIP: 
1.00 for both men and women). In men, alcohol con-
sumption also showed a high PIP of 0.995. In women, 

diet quality (PIP: 0.617), and alcohol consumption (PIP: 
0.401) followed the PIP of smoking. We also observed 
smoking as a strong contributor to the positive asso-
ciation with PhenoAA in both sexes (Additional file 1: 
Table S2).

Results by race: In the analysis stratified by race, 
smoking again showed high weights and PIPs for Gri-
mAA (Table  3). The collective association using QGC 
showed an average of 6.03  years greater GrimAA per 
quartile difference in the six components (95% CI 4.45, 
7.61) in Black participants and 4.52  years (95% CI 3.46, 
5.58) in White participants, respectively. Using QGC, 
we observed smoking accounted for 78.0% of positive 
association with GrimAA in Black participants (weight: 

Table 3 Relative contributions of six components to GrimAA at Y20 from QGC and BKMR by subgroups

Models were adjusted for race, sex, body mass index (BMI), and field center; CI confidence interval, CrI credible interval, QGC Quantile-based g-computation, BKMR 
Bayesian kernel machine regression, PIPs posterior inclusion probabilities. The positive and negative weights from QGC represents the proportion of the effect 
estimate for each component (sum up to 1 or − 1 for the same direction); The PIP reflects the ranked importance of each component in association with GrimAA. † 
Change in mean GrimAA per one quartile change of all six components for QGC; change in mean GrimAA when all of the six lifestyle components are fixed at their 
75th percentile compared to when the six lifestyle components are at their 25th percentile for BKMR

Lifestyle 
components at or 
by Y20

Weights from QGC PIPs from BKMR

By smoking status Ever smokers (N = 285) Never smokers (N = 459) Ever smokers (N = 285) Never smokers (N = 459)

Alcohol consumption 0.361 0.405 0.868 0.429

Diet quality  − 0.445  − 0.762 0.471 0.203

Education years  − 0.555  − 0.238 0.676 0.086

Physical activity 0.071 0.325 0.135 0.142

Sleep hours 0.007 0.270 0.138 0.119

Smoking 0.559 NA 1.000 NA

Collective association 1.47 (95% CI 0.39, 2.55), p = 0.008 0.13 (95% CI − 0.43, 0.71), 
p = 0.639

3.08 (95% CrI 1.13, 5.02) 0.47 (95% CrI − 0.38, 1.32)

By sex Men (N = 391) Women (N = 353) Men (N = 391) Women (N = 353)

Alcohol consumption 0.136 0.093 0.995 0.401

Diet quality  − 0.224  − 0.692 0.012 0.617

Education years  − 0.776  − 0.267 0.061 0.193

Physical activity 0.032 0.005 0.109 0.016

Sleep hours 0.034  − 0.036 0.053 0.055

Smoking 0.798 0.907 1.000 1.000

Collective association 6.67 (95% CI 5.43, 7.91), 
p < 0.001

3.18 (95% CI 1.92, 4.44), 
p < 0.001

5.53 (95% CrI 3.78, 7.27) 2.52 (95% CrI 0.74, 4.28)

By race Black participants (N = 304) White participants (N = 440) Black participants (N = 304) White participants 
(N = 440)

Alcohol consumption 0.168 0.082 0.993 0.292

Diet quality  − 0.477  − 0.423 0.032 0.425

Education years 0.034  − 0.577 0.063 0.821

Physical activity  − 0.523 0.061 0.001 0.410

Sleep hours 0.018 0.032 0.028 0.217

Smoking 0.780 0.824 1.000 1.000

Collective association 6.03 (95% CI 4.45, 7.61), 
p < 0.001

4.52 (95% CI 3.46, 5.58), 
p < 0.001

5.93 (95% CrI 3.24, 8.61) 1.96 (95% CrI 0.11, 
3.81)
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0.780) and 82.4% in White participants (weight: 0.824), 
respectively. Education showed a strong inverse contri-
bution (weight: − 0.577) in White participants only. Diet 
quality showed negative contributions for both Black and 
White participants (weight: − 0.477 for Black partici-
pants and − 0.423 for White participants, respectively). 
The collective associations using BKMR were 5.93 (95% 
CrI 3.24, 8.61) for Black participants and 1.96 (95% CrI 
0.11, 3.81) for White participants, respectively, and both 
did not include the null. Using BKMR, we observed a PIP 
of 1.000 for smoking in both races. Alcohol consump-
tion showed a PIP of 0.993 in Black participants. Edu-
cation showed a PIP of 0.821 in White participants. We 
also observed smoking showed high weights and PIPs 
for PhenoAA in both races using both QGC and BKMR 
(Additional file 1: Table S2).

The six components in linear regression models 
had associations that were generally consistent with 
the results from QGC and BKMR (Additional file  1: 
Table S3). We did not observe differences using moder-
ate or vigorous levels of physical activity instead of total 
intensity score (data not shown).

Discussion
In this study, we examined six lifestyle- and health-related 
exposures and their individual and combined association 
with EAA and explored their relative contributions to 
EAA. Among the individual components, we observed 
smoking and alcohol consumption, diet quality, and 
education had significant contributions to EAA. Smok-
ing showed the greatest contributions in all analyses. 
We also observed lifestyle- and health-related exposures 
that showed stronger contributions in subgroup-specific 
analyses, such as diet quality among women and educa-
tion among White participants. Sleep hours and physical 
activity did not show strong contributions to the collec-
tive association between the six components and greater 
EAA.

Our results support prior findings on smoking and 
EAA [29, 30] and suggest that the influence of smoking 
may overwhelm that of other lifestyle- and health-related 
components in our study. Of note, the DNA methyla-
tion surrogate marker for smoking pack-years was used 
in defining GrimAge. However, smoking also showed 
the strongest contribution to PhenoAA, which does not 
include smoking pack-years in its calculation. The strong 
contribution of smoking to both EAA measurements 
implies that greater cumulative smoking plays a role in 
epigenetic changes captured by EAA, once again high-
lighting the primacy of smoking exposure in the risk of 
age-related diseases. These findings reinforce the need for 
smoking cessation efforts, and may help enhance them; 
future studies should confirm our findings in additional 

populations and explore the possibility of including epi-
genetic components in anti-smoking interventions.

Using BKMR, we observed a U-shaped relationship 
between alcohol consumption and GrimAA similar to 
the observed nonlinear relationship between alcohol 
consumption and CVD risk [31]. Together with stud-
ies associating alcohol consumption with DNA meth-
ylation surrogate markers such as C-reactive protein, 
leptin, and PAI-1 [32–34] this evidence suggests that epi-
genetic changes represented by GrimAA may be in the 
pathway between alcohol consumption and health out-
comes including CVD. Furthermore, GrimAA may serve 
as a tool to reflect the amounts of alcohol consumption 
for appropriate intervention, rather than self-reported 
values. Identifying the acting mechanism and causal-
ity between alcohol consumption and GrimAA would 
be worth investigating in future studies. Similarly, the 
results of diet quality and EAA in our study are in-line 
with previous evidence, which indicates a healthier diet is 
associated to decelerated epigenetic aging [35, 36]. Prior 
studies reported that higher education attainment was 
associated with slower EAA [10, 11, 30]. As a proxy of 
socioeconomic status, education level can connote vari-
ous other factors connected to health such as financial 
status/income, employment, and access to higher-qual-
ity food [37]. The possibility that these factors contrib-
ute most to GrimAA, rather than education, should be 
explored in future studies.

In our stratified analyses by smoking status, lifestyle- 
and health-related components were not associated with 
GrimAA among never-smokers in combination. How-
ever, previous studies reported the association between 
GrimAA and adverse health outcomes such as meta-
bolic syndrome and major depressive disorder among 
non-smokers [38, 39]. Our sex-stratified analysis using 
BKMR presented strong contributions of diet quality 
to GrimAA in women only, possibly reflecting differ-
ent diet patterns by gender [40–42] which are not cap-
tured by a summary measurement such as HEI score. We 
also observed a contrast in the contributions of alcohol 
consumption and education between Black and White 
participants. Our findings of racial discrepancies in con-
tributions of alcohol and education to GrimAA imply 
that those health-related components could have differ-
ent associations with epigenetic changes by race, or racial 
disparities in lifestyle and environment. Other compo-
nents associated with health disparities in sex and race 
(such as neighborhood environment, behavioral- and 
psychosocial factors) might play a role in the discrepan-
cies by subgroups, would be worth being investigated, 
and should be researched carefully as these factors 
(such as education) could play a role as a proxy of other 
socioeconomic disparities. We believe identifying these 
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different susceptibilities by demographic and behavioral 
subgroups should be a direction for future studies, which 
would provide important keys for targeted interventions 
for health promotion.

We observed modest discrepancies between the results 
for relative contributions from the QGC and BKMR 
analyses. One potential reason is differences in the meas-
urements of ‘relative contribution’ between QGC and 
BKMR, captured by weight and PIP, respectively. While 
the weight in QGC reflects the proportion of effect due 
to certain components among all components in the 
same direction, the PIP in BKMR reflects the ranked 
importance of certain components in association with 
the outcome. As the relative contribution is a form of 
proportion in QGC, one component can have a low 
weight due to a competing component with a stronger 
contribution, yet still make a contribution to the collec-
tive association that might not be captured in QGC. On 
the other hand, a component with high weights may only 
indicate that that particular component has the great-
est contribution compared to the others with the same 
direction of association, not necessarily a large and clini-
cally meaningful contribution to the outcome on its own. 
Therefore, examining PIPs from BKMR alongside weights 
from QGC provides more information for understand-
ing the relative contributions of whole components than 
either method singly. Another possible explanation for 
differences between the two approaches taken here may 
be the robustness and flexibility of the BKMR method 
[28]. Although QGC demonstrates the directions of asso-
ciation and relative contribution of single components 
by that direction, BKMR may reflect more accurate pat-
terns of association such as nonadditive and nonlinear 
relationships. The case of alcohol consumption, which 
we found to have a U-shaped pattern with GrimAA, 
could be an example for this explanation as it showed low 
weights in most QGC analysis but high PIPs in BKMR. 
This shows how the parallel use of both methods is useful 
to understand the exposure-outcome relationship, com-
prising overall collective directions as well as potential 
nonlinearity of each component.

Our study has some limitations. We only focused 
on quantitative aspects of lifestyle- and health-related 
exposures in this study; however, qualitative measure-
ments for those components can also affect EAA. For 
example, quality of sleep such as irregular sleep or sleep-
disordered breathing may have greater contributions to 
EAA rather than sleep duration. For physical activity, 
different types of exercise (i.e., aerobics, weight-lifting) 
may have different impacts on EAA which are not cap-
tured by intensity score. Developing a way to incorporate 
qualitative measurements of lifestyle- and health-related 
components and identifying attributable components for 

EAA could be one direction for future studies. Second, 
there is no established standard to construct a meas-
ure of ’collective lifestyle- and health-related exposure’. 
Other components including occupation or environ-
mental exposure, which were not focused on in the cur-
rent study, may have greater influence on EAA. Thus, it 
should be noted that residual confounding from compo-
nents that were not measured in the current study may 
exist. Identifying impactful components using a more 
comprehensive set of lifestyle- and health-related com-
ponents should also be a future direction of the studies 
with lifestyle- and health-related components and EAA. 
In addition, as our study focused on the lifestyle- and 
health-related exposures that are modifiable by public 
health promotions such as behavioral interventions or 
health policy, the acting mechanisms through clinical 
determinants (e.g., blood glucose, lipid metabolism, etc.) 
of the combined exposures on EAA remained as a chal-
lenge. It would be worthwhile to be investigated in future 
research on the role of lifestyle- and health-related expo-
sures and EAA. Finally, the proportions of current- and 
former smokers in our study are relatively small; how-
ever, they are comparable to the national samples in the 
USA [43], and we thus believe the data for this study pro-
vide external validity.

Conclusions
EAA itself is a multifactorial trait. Lifestyle, behavioral, 
and environmental exposures influence EAA by altering 
DNA methylation levels. The positive overall association 
of lifestyle- and health-related components and GrimAA 
in our study supports the idea that multiple lifestyle- and 
health-related components collectively play a role in 
EAA. By identifying the relative contributions of lifestyle- 
and health-related exposures, we anticipate our study 
can provide a direction for intervention strategies, sug-
gesting which components should be the primary focus 
for promoting younger EAA. Differences by race and 
sex from our results can also provide a key for targeted 
intervention strategies, with different primary focus by 
population.

Methods
Study samples
The study participants were from the Coronary Artery 
Risk Development in Young Adults (CARDIA) study. The 
CARDIA study is a multicenter prospective cohort study 
to examine the development and determinants of cardio-
vascular disease in young adults. At study baseline (Year 
0; 1985–1986) 5115 Black and White adults (based on 
participants’ self-reported race) aged 18–30  years were 
enrolled across four field centers in Birmingham, AL, 
Chicago, IL, Minneapolis, MN, and Kaiser Permanente 
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Health Plan in Oakland, CA. Participants have been fol-
lowed up after baseline nine times, in study years (Y) Y0, 
Y2, Y5, Y7, Y10, Y15, Y20, Y25, and Y30. More details 
about study design and recruitment for the CARDIA 
study are described elsewhere [44]. In the current study, 
we included participants with complete information on 
DNA methylation and six lifestyle- and health-related 
exposures measured at Y20: alcohol consumption, educa-
tion, diet, physical activity, sleep, and smoking. Of 3549 
participants in CARDIA Y20, 1200 with available whole 
blood samples were randomly selected for DNA meth-
ylation measurement. After excluding samples with low 
DNA amount or poor quality, DNA methylation levels 
were measured in 1092 participants, and the final meth-
ylation dataset included 957 participants after quality 
control (QC) procedures. Out of 957 participants, we 
included participants with complete information across 
six component variables, which resulted in the final ana-
lytic data set of 744 participants.

Lifestyle‑ and health‑related components in CARDIA study
In the current study, we investigated six lifestyle- and 
health-related exposures: smoking, alcohol consumption, 
education, sleep, diet, and physical activity (as of Y20). 
Smoking was defined as cumulative packs of cigarettes 
by Y20, which was calculated as the total number of ciga-
rette packs over the study years. For example, smoking 
from Y15 to Y20 was calculated by summing the num-
ber of self-reported daily amount of cigarettes at Y15 
and Y20 multiplied by 5, and then divided by 20 (num-
ber of cigarettes in a pack). We repeated and summed 
this calculation for each exam interval. We defined alco-
hol consumption by Y20 as the summed average alcohol 
consumption for each pair of consecutive examinations 
multiplied by the time interval (in years) between them. 
For example, alcohol consumption from Y15 to Y20 was 
calculated by taking the mean of self-reported alcohol 
intakes (in ml/day) at Y15 and Y20 multiplied by 5. We 
repeated this calculation for each interval (Y0-Y2, Y2-Y5, 
Y5-Y7, Y7-Y10, Y10-Y15, Y15-Y20) and summed them 
together to produce a measure of alcohol consumption 
from Y0 to Y20. For education we used self-reported 
education (maximum education years) in years at Y20. 
Sleep information was obtained from the Sleep Habits 
questionnaire at Y15 and Y20, asking study participants 
to report the hours of actual sleep during the past month 
of the exam. We used the mean value of sleep hours 
between Y15 and Y20 for the analysis. The Healthy Eat-
ing Index (HEI) scores [45] were measured at Y0, Y7, and 
Y20 as a measure of participants’ diet quality, asking par-
ticipants’ self-reported dietary history. To calculate diet 
quality over the study years, we used mean values of HEI 

scores according to participants’ number of exam years 
[46]. Finally, for participants’ physical activity levels, total 
intensity scores obtained from the self-reported Physical 
Activity questionnaire at Y0, Y2, Y5, Y7, Y10, Y15, and 
Y20 were employed in the current study. To calculate 
cumulative total intensity scores, we summed average 
total intensity scores for each pair of consecutive exami-
nations multiplied by the time interval, as we adopted the 
same approach for alcohol consumption.

Quality control of DNA methylation profiling 
and calculation of epigenetic age acceleration (EAA)
We conducted QC procedures adopting the R packages 
minfi [47] and ENmix [48] with DNA methylation profiles 
among 1200 participants. We excluded CpGs with detec-
tion rate less than 95%. We also excluded samples if the 
sample demonstrated either > 5% of low quality of meth-
ylation measurements or < 3 standard deviation from the 
mean intensity of bisulfite conversion probes. We further 
adopted Tukey’s method to detect and exclude outlier 
samples [49]. The R function, preprocessIllumina, in the 
minfi package was used for preprocessing procedures 
after QC [47].

We used two EAA measurements, GrimAA and Phe-
noAA, to assess the association between collective life-
style- and health-related components and epigenetic 
aging in the current study. We focused on GrimAA 
and PhenoAA because the two EAA measurements, 
which are recently developed, have shown better perfor-
mance in association with health outcomes compared 
to the first-generation EAA measurements, as they were 
designed to predict healthspan [18, 19, 24]. The calcula-
tions of GrimAge and PhenoAge in participants were 
based on the published algorithms [18, 19]. We used Hor-
vath’s online DNA Methylation Age Calculator (https:// 
dnama ge. genet ics. ucla. edu) to calculate GrimAge and 
PhenoAge with participants’ DNA methylation data from 
the CARDIA study. GrimAA and PhenoAA were then 
derived from the regression residuals of GrimAge against 
chronological age, which captures the difference between 
epigenetic age and chronological age.

Statistical analysis
We performed descriptive analyses to explore the dis-
tribution of participants’ chronological age, GrimAge, 
and GrimAA as well as their lifestyle- and health-related 
exposures and potential confounders (body mass index 
[BMI, kg/m2], sex, race, and field center). The six com-
ponents were log-transformed and centered and each 
rescaled to have a mean of 0 and a standard deviation 
(SD) of 1. We also assessed Spearman correlation coef-
ficients among our six individual components of interest. 

https://dnamage.genetics.ucla.edu
https://dnamage.genetics.ucla.edu
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To assess the relative contributions and collective asso-
ciations of the six exposures, we used quantile-based 
g-computation (QGC) and Bayesian kernel machine 
regression (BKMR). For comparison purposes we con-
ducted additional, conventional analyses with linear 
regression models by including all six components as 
independent variables and each EAA as an outcome. 
To be consistent with QGC and BKMR analyses, log-
transformed and standardized (mean = 0, SD = 1) com-
ponents variables were used in the linear regression 
models adjusting for the same covariates as the other two 
approaches. The slope coefficients from the linear models 
was defined as mean change of EAA per increase of 1 SD. 
Statistical significance was defined with a threshold of p 
value < 0.05.

We used SAS version 9.4 (SAS Institute Inc., Cary, 
NC) for descriptive analyses and traditional regression 
models, and R version 4.0.3 (R Core Team, 2020) for 
QGC and BKMR analyses. As we observed greater asso-
ciations with GrimAA, we present GrimAA in our main 
results, and PhenoAA in our supplementary tables for all 
analyses.

Quantile‑based g‑computation (QGC)
In QGC, each continuous component is transformed into 
the quantized version, Component

q
j  (coded as 0, 1, 2, or 

3), and fitted to a linear model as follows:

where βj is the effect size for jth component, and ǫi 
is the error term. The estimate of collective associa-
tion, ψ =

6
j=1 βj , is interpreted as the change in EAA 

per one quartile change of all six components, con-
trolling for covariates (age, sex, race, BMI, and field 
center). The weight for the kth component is defined 
as wk = βk/

∑6
j=1 βj , when the directions are same 

across all components. If the directions are different, the 
weights are defined for each direction, thus sum to 1.0 for 
positive and to − 1.0 for negative. The R package qgcomp 
[27] was used to obtain point estimates and 95% confi-
dence intervals (95% CI) for QGC analyses.

Bayesian kernel machine regression (BKMR)
We also used BKMR with a Gaussian kernel to investigate 
the association between the collective effect of six com-
ponents and EAA. The equation of the BKMR model for 
this study can be represented as follows:

YEAA = β0 + ψ

6
∑

j=1

wjComponent
q
j + ǫi

= β0 +

6
∑

j=1

βjComponent
q
j + ǫi

where Componenti =
(

Componenti1, . . . , Componenti6
)

 
is a vector of the six component variables for the ith 
participant, CovariateTi  is the matrix of covariates (age, 
sex, race, BMI, and field center), β is the vector of cor-
responding coefficients for covariates, and ǫi is the error 
term. In the context of this study, h() represents the 
unknown exposure–response relationship among the 
components in the combination, which may incorpo-
rate nonlinearity and nonadditivity. In this study, single 
exposure–response relationship was defined between 
each component and EAA, fixing all other components 
to their median and controlling other covariates. In 
BKMR, a kernel machine is used to specify the unknown 
exposure-relationship h(), and the component-wise vari-
able selection using Gaussian kernel within a Bayesian 
paradigm allows to calculate posterior inclusion prob-
ability (PIP) [28]. The estimates for collective association 
were defined as the change in the mean EAA when all 
of the six components are fixed at their 75th percentile 
compared to when the six components are at their 25th 
percentile, controlling for covariates [50]. For all BKMR 
models, we ran 50,000 iterations to fit the Markov Chain 
Monte Carlo (MCMC) sampler. R package bkmr [50] was 
used to obtain point estimates and 95% credible intervals 
(95% CrI) for BKMR analyses and plots.

Definition of relative contributions to EAA
In this study, we defined the term ‘relative contribution’ 
to reflect the magnitude of importance in the collective 
association of all six components with EAA. In QGC, the 
relative contribution is captured by weight, which reflects 
the proportion of the effect among the individual com-
ponents with the same direction. In BKMR, the relative 
contribution is captured by PIP, which reflects the ranked 
importance of each component in association with EAA. 
The higher weight and PIP represent the higher impor-
tance in the collective association.

Sensitivity analyses
To take into account that GrimAge incorporates DNA 
methylation-based surrogate markers for smoking pack-
years [19], we investigated the relative contributions of 
lifestyle- and health-related components to GrimAA by 
participant smoking status at Y20. We grouped the par-
ticipants into ever smokers and never smokers. Addition-
ally, we performed separate analyses by further grouping 
the participants into current-, former-, and never smok-
ers. We also utilized different measures of physical 
activity for a sensitivity analysis, using moderate and 
vigorous activity levels for participants’ physical activity 

YEAA = h
(

Componenti
)

+ CovariateTi β + ǫi
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information. We additionally performed stratified analy-
ses by sex and race.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13148‑ 022‑ 01304‑9.

Additional file 1. Table S1: Relative contributions of six cumulative life‑
style‑ and health‑related components to PhenoAA in the CARDIA sample 
from QGC and BKMR. Table S2: Relative contributions of six components 
to PhenoAA in the CARDIA sample from QGC and BKMR, by subgroups. 
Table S3: Estimates from multivariable linear regression models for asso‑
ciation between lifestyle‑ and health‑related components and EAA. Fig. 
S1: Spearman correlations among six components by subgroups.

Acknowledgements
This paper has been reviewed by Coronary Artery Risk Development in Young 
Adults (CARDIA) for scientific content.

Author contributions
Study design: KK, YZ, BTJ, LH. Access to the data and verification: KK, YZ, BTJ. 
Statistical analysis and interpretation: KK, YZ, BTJ, HJ. Manuscript writing: KK, 
YZ, BTJ. Manuscript review and revision: PG, DRJ, KZ, LL, NBA, JTW, NHF, DLJ, 
LH. Study supervision: LH. All authors reviewed and approved the final version 
of the manuscript.

Funding
The Coronary Artery Risk Development in Young Adults Study (CARDIA) is 
conducted and supported by the National Heart, Lung, and Blood Institute 
(NHLBI) in collaboration with the University of Alabama at Birmingham 
(HHSN268201800005I & HHSN268201800007I), Northwestern University 
(HHSN268201800003I), University of Minnesota (HHSN268201800006I), and 
Kaiser Foundation Research Institute (HHSN268201800004I). CARDIA is also 
partially supported by the Intramural Research Program of the National 
Institute on Aging (NIA) and an intra‑agency agreement between NIA and 
NHLBI (AG0005). The data collection was supported by the National Institute 
of Digestive Diseases and Diabetes (R01 DK106201, Kaiser Permanente 
Northern California, PI: Dr. Erica P. Gunderson), laboratory work and analytical 
components were funded by American Heart Association (17SFRN33700278 & 
14SFRN20790000, Northwestern University, PI: Dr. Lifang Hou). Drs. Liu, Zheng, 
and Hou’s work is partially supported by NIH/NIA R21 AG068955.

Availability of data and materials
Data used for this paper were obtained from the Coronary Artery Risk Devel‑
opment in Young Adults (CARDIA) study database (https:// www. cardia. dopm. 
uab. edu). Data can be provided by the corresponding author upon reasonable 
request.

Declarations

Ethics approval and consent to participate
All Coronary Artery Risk Development in Young Adults (CARDIA) field centers 
received institutional review board approvals from the field center institutions 
and all participants provided written informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Preventive Medicine, Northwestern University Feinberg 
School of Medicine, 680 Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA. 
2 Department of Statistics, Northwestern University, Evanston, IL, USA. 3 Division 
of Epidemiology and Community Health, University of Minnesota School 
of Public Health, Minneapolis, MN, USA. 4 Department of Environmental Health 

Sciences, University at Albany, State University of New York, Rensselaer, NY, 
USA. 5 Division of Biostatistics, Washington University in St. Louis, St. Louis, MO, 
USA. 6 Department of Population and Quantitative Health Sciences, University 
of Massachusetts Medical School, Worcester, MA, USA. 

Received: 24 March 2022   Accepted: 21 June 2022

References
 1. Foster HME, Celis‑Morales CA, Nicholl BI, Petermann‑Rocha F, Pell JP, Gill 

JMR, et al. The effect of socioeconomic deprivation on the association 
between an extended measurement of unhealthy lifestyle factors and 
health outcomes: a prospective analysis of the UK Biobank cohort. Lancet 
Public Health. 2018;3(12):e576–85.

 2. Islami F, Chen W, Yu XQ, Lortet‑Tieulent J, Zheng R, Flanders WD, et al. 
Cancer deaths and cases attributable to lifestyle factors and infections in 
China, 2013. Ann Oncol. 2017;28(10):2567–74.

 3. Rezende LFM, Murata E, Giannichi B, Tomita LY, Wagner GA, Sanchez ZM, 
et al. Cancer cases and deaths attributable to lifestyle risk factors in Chile. 
BMC Cancer. 2020;20(1):693.

 4. Vajdic CM, Perez‑Concha O, Dobbins T, Ward RL, Schaffer AL, van Leeu‑
wen MT, et al. Demographic, social and lifestyle risk factors for cancer 
registry‑notified cancer of unknown primary site (CUP). Cancer Epide‑
miol. 2019;60:156–61.

 5. Colpani V, Baena CP, Jaspers L, van Dijk GM, Farajzadegan Z, Dhana K, et al. 
Lifestyle factors, cardiovascular disease and all‑cause mortality in middle‑
aged and elderly women: a systematic review and meta‑analysis. Eur J 
Epidemiol. 2018;33(9):831–45.

 6. Martin WP, Sharif F, Flaherty G. Lifestyle risk factors for cardiovascular 
disease and diabetic risk in a sedentary occupational group: the Galway 
taxi driver study. Iran J Med Sci. 2016;185(2):403–12.

 7. Mozaffarian D, Wilson PW, Kannel WB. Beyond established and novel 
risk factors: lifestyle risk factors for cardiovascular disease. Circulation. 
2008;117(23):3031–8.

 8. Abdul QA, Yu BP, Chung HY, Jung HA, Choi JS. Epigenetic modifica‑
tions of gene expression by lifestyle and environment. Arch Pharm Res. 
2017;40(11):1219–37.

 9. Fiorito G, McCrory C, Robinson O, Carmeli C, Rosales CO, Zhang Y, et al. 
Socioeconomic position, lifestyle habits and biomarkers of epigenetic 
aging: a multi‑cohort analysis. Aging. 2019;11(7):2045–70.

 10. Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, et al. Epigenetic 
clock analysis of diet, exercise, education, and lifestyle factors. Aging. 
2017;9(2):419–46.

 11. Zhao W, Ammous F, Ratliff S, Liu J, Yu M, Mosley TH, et al. Education and 
lifestyle factors are associated with DNA methylation clocks in older 
African Americans. Int J Environ Res Public Health. 2019;16(17):56.

 12. Hayflick L. Biological aging is no longer an unsolved problem. Ann N Y 
Acad Sci. 2007;1100:1–13.

 13. Levine ME. Modeling the rate of senescence: Can estimated biological 
age predict mortality more accurately than chronological age? J Gerontol 
A Biol Sci Med Sci. 2013;68(6):667–74.

 14. Crews D. Epigenetic modifications of brain and behavior: theory and 
practice. Horm Behav. 2011;59(3):393–8.

 15. Horvath S, Raj K. DNA methylation‑based biomarkers and the epigenetic 
clock theory of ageing. Nat Rev Genet. 2018;19(6):371–84.

 16. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. 
Genome‑wide methylation profiles reveal quantitative views of human 
aging rates. Mol Cell. 2013;49(2):359–67.

 17. Horvath S. DNA methylation age of human tissues and cell types. 
Genome Biol. 2013;14(10):R115.

 18. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. 
An epigenetic biomarker of aging for lifespan and healthspan. Aging. 
2018;10(4):573–91.

 19. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA meth‑
ylation GrimAge strongly predicts lifespan and healthspan. Aging. 
2019;11(2):303–27.

 20. Kresovich JK, Xu Z, O’Brien KM, Weinberg CR, Sandler DP, Taylor JA. 
Epigenetic mortality predictors and incidence of breast cancer. Aging. 
2019;11(24):11975–87.

https://doi.org/10.1186/s13148-022-01304-9
https://doi.org/10.1186/s13148-022-01304-9
https://www.cardia.dopm.uab.edu
https://www.cardia.dopm.uab.edu


Page 12 of 12Kim et al. Clinical Epigenetics           (2022) 14:85 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 21. Nannini DR, Joyce BT, Zheng Y, Gao T, Liu L, Yoon G, et al. Epigenetic age 
acceleration and metabolic syndrome in the coronary artery risk devel‑
opment in young adults study. Clin Epigenetics. 2019;11(1):160.

 22. Zheng Y, Joyce BT, Colicino E, Liu L, Zhang W, Dai Q, et al. Blood epige‑
netic age may predict cancer incidence and mortality. EBioMedicine. 
2016;5:68–73.

 23. Kim K, Joyce B, Zheng Y, Schreiner PJ, Jacobs DR Jr, Catov JM, et al. DNA 
methylation GrimAge and incident diabetes: the Coronary Artery Risk 
Development in Young Adults (CARDIA) study. Diabetes. 2021;6:66.

 24. McCrory C, Fiorito G, Hernandez B, Polidoro S, O’Halloran AM, Hever A, 
et al. GrimAge outperforms other epigenetic clocks in the prediction of 
age‑related clinical phenotypes and all‑cause mortality. J Gerontol A Biol 
Sci Med Sci. 2021;76(5):741–9.

 25. Wang C, Ni W, Yao Y, Just A, Heiss J, Wei Y, et al. DNA methylation‑based 
biomarkers of age acceleration and all‑cause death, myocardial infarction, 
stroke, and cancer in two cohorts: the NAS, and KORA F4. EBioMedicine. 
2021;63: 103151.

 26. Byrd DA, Judd SE, Flanders WD, Hartman TJ, Fedirko V, Agurs‑Collins T, 
et al. Associations of novel dietary and lifestyle inflammation scores with 
incident colorectal cancer in the NIH‑AARP diet and health study. JNCI 
Cancer Spectr. 2020;4(3):pkaa009.

 27. Keil AP, Buckley JP, O’Brien KM, Ferguson KK, Zhao S, White AJ. A quantile‑
based g‑computation approach to addressing the effects of exposure 
mixtures. Environ Health Perspect. 2020;128(4):47004.

 28. Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, 
et al. Bayesian kernel machine regression for estimating the health effects 
of multi‑pollutant mixtures. Biostatistics. 2015;16(3):493–508.

 29. Lei MK, Gibbons FX, Simons RL, Philibert RA, Beach SRH. The effect of 
tobacco smoking differs across indices of DNA methylation‑based aging 
in an African American sample: DNA methylation‑based indices of smok‑
ing capture these effects. Genes. 2020;11(3):66.

 30. Oblak L, van der Zaag J, Higgins‑Chen AT, Levine ME, Boks MP. A system‑
atic review of biological, social and environmental factors associated with 
epigenetic clock acceleration. Ageing Res Rev. 2021;69: 101348.

 31. Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA. Association of 
alcohol consumption with selected cardiovascular disease outcomes: a 
systematic review and meta‑analysis. BMJ. 2011;342: d671.

 32. Albert MA, Glynn RJ, Ridker PM. Alcohol consumption and plasma con‑
centration of C‑reactive protein. Circulation. 2003;107(3):443–7.

 33. Otaka M, Konishi N, Odashima M, Jin M, Wada I, Matsuhashi T, et al. Effect 
of alcohol consumption on leptin level in serum, adipose tissue, and 
gastric mucosa. Dig Dis Sci. 2007;52(11):3066–9.

 34. Sasaki A, Kurisu A, Ohno M, Ikeda Y. Overweight/obesity, smoking, and 
heavy alcohol consumption are important determinants of plasma PAI‑1 
levels in healthy men. Am J Med Sci. 2001;322(1):19–23.

 35. Kim Y, Huan T, Joehanes R, McKeown NM, Horvath S, Levy D, et al. Higher 
diet quality relates to decelerated epigenetic aging. Am J Clin Nutr. 
2021;6:66.

 36. Sae‑Lee C, Corsi S, Barrow TM, Kuhnle GGC, Bollati V, Mathers JC, et al. 
Dietary intervention modifies DNA methylation age assessed by the 
epigenetic clock. Mol Nutr Food Res. 2018;62(23): e1800092.

 37. Vlismas K, Stavrinos V, Panagiotakos DB. Socio‑economic status, dietary 
habits and health‑related outcomes in various parts of the world: a 
review. Cent Eur J Public Health. 2009;17(2):55–63.

 38. Lee HS, Park T. The influences of DNA methylation and epigenetic 
clocks, on metabolic disease, in middle‑aged Koreans. Clin Epigenet. 
2020;12(1):148.

 39. Protsenko E, Yang R, Nier B, Reus V, Hammamieh R, Rampersaud R, et al. 
“GrimAge,” an epigenetic predictor of mortality, is accelerated in major 
depressive disorder. Transl Psychiatry. 2021;11(1):193.

 40. Xu SH, Qiao N, Huang JJ, Sun CM, Cui Y, Tian SS, et al. Gender differ‑
ences in dietary patterns and their association with the prevalence of 
metabolic syndrome among chinese: a cross‑sectional study. Nutrients. 
2016;8(4):180.

 41. Prattala R, Paalanen L, Grinberga D, Helasoja V, Kasmel A, Petkeviciene 
J. Gender differences in the consumption of meat, fruit and vegeta‑
bles are similar in Finland and the Baltic countries. Eur J Public Health. 
2007;17(5):520–5.

 42. Nanney MS, Grannon KY, Cureton C, Hoolihan C, Janowiec M, Wang Q, 
et al. Application of the Healthy Eating Index‑2010 to the hunger relief 
system. Public Health Nutr. 2016;19(16):2906–14.

 43. Jamal A, King BA, Neff LJ, Whitmill J, Babb SD, Graffunder CM. Current 
cigarette smoking among adults—United States, 2005–2015. Morbid 
Mortal Wkly Rep. 2016;65(44):1205–11.

 44. Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR Jr, 
et al. CARDIA: study design, recruitment, and some characteristics of the 
examined subjects. J Clin Epidemiol. 1988;41(11):1105–16.

 45. Guenther PM, Casavale KO, Reedy J, Kirkpatrick SI, Hiza HA, Kuczynski 
KJ, et al. Update of the Healthy Eating Index: HEI‑2010. J Acad Nutr Diet. 
2013;113(4):569–80.

 46. Hirahatake KM, Jacobs DR Jr, Shikany JM, Jiang L, Wong ND, Odegaard 
AO. Cumulative average dietary pattern scores in young adulthood 
and risk of incident type 2 diabetes: the CARDIA study. Diabetologia. 
2019;62(12):2233–44.

 47. Aryee MJ, Jaffe AE, Corrada‑Bravo H, Ladd‑Acosta C, Feinberg AP, Hansen 
KD, et al. Minfi: a flexible and comprehensive Bioconductor package for 
the analysis of Infinium DNA methylation microarrays. Bioinformatics. 
2014;30(10):1363–9.

 48. Xu Z, Niu L, Li L, Taylor JA. ENmix: a novel background correction method 
for Illumina HumanMethylation450 BeadChip. Nucleic Acids Res. 
2016;44(3): e20.

 49. Behrens JT. Exploratory data analysis. Pearson; 1997.
 50. Bobb JF, Claus Henn B, Valeri L, Coull BA. Statistical software for analyzing 

the health effects of multiple concurrent exposures via Bayesian kernel 
machine regression. Environ Health. 2018;17(1):67.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Relative contributions of six lifestyle- and health-related exposures to epigenetic aging: The Coronary Artery Risk Development in Young Adults (CARDIA) study
	Please let us know how this document benefits you.
	Authors

	Relative contributions of six lifestyle- and health-related exposures to epigenetic aging: the Coronary Artery Risk Development in Young Adults (CARDIA) Study
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	Results
	Distribution of participants’ characteristics
	Relative contribution of six exposures and collective association
	Results from the stratified analysis by study subgroups


	Discussion
	Conclusions
	Methods
	Study samples
	Lifestyle- and health-related components in CARDIA study
	Quality control of DNA methylation profiling and calculation of epigenetic age acceleration (EAA)
	Statistical analysis
	Quantile-based g-computation (QGC)
	Bayesian kernel machine regression (BKMR)
	Definition of relative contributions to EAA
	Sensitivity analyses


	Acknowledgements
	References


