48 research outputs found

    A dynamical test for terrestrial planets in the habitable zone of HD 204313

    Get PDF
    With improvements in exoplanet detection techniques, the number of multiple planet systems discovered is increasing, while the detection of potentially habitable Earth-mass planets remains complicated and thus requires new search strategies. Dynamical studies of known multiple planet systems are therefore a vital tool in the search for stable and habitable planet candidates. Here, we present a dynamical study of the three-planet system HD 204313 to determine whether it could harbour an Earth-like planet within its habitable zone for a sufficient time to develop life. We found two semi-stable regions in the system, but neither prove stable for long enough for a terrestrial planet to develop life. Our investigations suggest that overlapping weak and high order resonances may be responsible for these semi-stable regions. This study established a framework for a larger project that will study the dynamical stability of the habitable zone of multiple planet systems, providing a list of interesting targets for future habitable low-mass planet searches

    Toward a Public MAGIC Gamma-Ray Telescope Legacy Data Portal

    Get PDF
    The MAGIC telescopes are one of the three major IACTs (Imaging Atmospheric Cherenkov Telescopes) for observation of gamma rays in the TeV regime currently operative. MAGIC functions since 2003, and has published data from more than 60 sources, mostly blazars. MAGIC already provides astronomical exttt.fits files with basic final scientific products such as spectral energy distributions, light curves and skymaps from published results. In future, the format of the files can be complemented with further relevant information to the community: a) by including the full multi-wavelength dataset enclosed in a publication, b) providing data in alternative easy-to-use formats such as ASCII or ECSV, which are accessible with other commonly used packages such as extttastropy or extttgammapy. Finally, besides high level products, activities have started to provide photon event lists and instrument response functions in a format such that scientists within and outside the community are allowed to perform higher level analysis. A second aim is to provide a full legacy of MAGIC data. This contribution will illustrate the achievements and plans of this activity

    MAGIC and H.E.S.S. detect VHE gamma rays from the blazar OT081 for the first time: a deep multiwavelength study

    Get PDF
    https://pos.sissa.it/395/815/pdfPublished versio

    Le centre Galactique aux trĂšs hautes Ă©nergies : modĂ©lisation de l’émission diffuse et premiers Ă©lĂ©ments d’analyse spectro-morphologique

    No full text
    The Galactic center (GC) is a very rich and complex astrophysical region. The high supernovae (SN) rate associated with the strong massive star formation should create a sustained cosmic rays (CR) injection in the GC via the shocks they produce. This region also harbors a Super-Massive Black Hole (SMBH) of 4 x 10⁶ M, named Sgr A*. Since it has been argued that the SMBH might also accelerate particles up to very high energies (VHE), its current and past activity could contribute to the CR population. In 2006, the H.E.S.S. collaboration revealed the presence of a VHE diffuse emission in the inner 100 pc of the Galaxy in close correlation with the molecular matter spread in the central molecular zone (CMZ). A major part of this emission is thus certainly of hadronic origin but it still remains mysterious. We report a new detailed spectral and morphological analysis of this region using 10 years of H.E.S.S. observations as well as a detailed modelling of the gamma-ray emission induced by the SNe. We study the impact of the spatial and temporal distribution of SNe in the CMZ on the VHE emission morphology and spectrum: we built a 3D model of VHE CR injection and diffusive propagation with a realistic gas distribution. The contribution of SNe can not be neglected. We show that a peaked gamma-ray profile and CR excess towards the GC, can be obtained using realistic SN spatial distribution taking into account the central massive star clusters. A strong dependence on the morphology of the emission with the energy is expected in this scenario. The CR density profile can also be reproduced by a unique stationary injection at the center by Sgr A* but it implies a stable morphology across the energy range. To distinguish the models, we need a 3D analysis. We present the first results of this analysis that we started to design in the software Gammapy to simultaneously fit a spectral and morphological model to the data. The observations of complex morphological regions with diffuse emission or multiple sources will become more and more numerous with the next generation instruments such as the Cherenkov Telescope Array. They will also require the development of this technique. We detail the first validations of this method on point sources using a Monte Carlo tool. For the ridge emission, we report the new spectrum using a method that we developed for the classical spectral fitting necessary for faint emission. By using new spatial templates to describe the complexity of the diffuse emission, we perform a morphological analysis in different energy bands independently. No significant variation is found but more observations are needed to give a conclusive statement as well as a real 3D analysis in the GC region. The observations of CTA will allow to give precise answers to these questions.Le centre Galactique (GC) est une rĂ©gion trĂšs riche et complexe. Le taux de supernovae (SN) associĂ© Ă  la formation d'Ă©toiles massives y est trĂšs Ă©levĂ©e et devrait crĂ©er une injection continue de rayons cosmiques (CRs) dans le GC Ă  travers les chocs qu'elles produisent. Cette rĂ©gion abrite Ă©galement un trou noir supermassif (SMBH) de 4 x 10⁶ M, nommĂ© Sgr A*. De nombreux arguments ont permis de montrer que le SMBH pouvait accĂ©lĂ©rer des particules Ă  trĂšs haute Ă©nergie (VHE); son activitĂ© actuelle et passĂ©e pourrait donc Ă©galement contribuer Ă  la population de CRs. En 2006, la collaboration H.E.S.S. a rĂ©vĂ©lĂ© la prĂ©sence d'une Ă©mission diffuse Ă  VHE dans les 100 pc centraux de la Galaxie, trĂšs corrĂ©lĂ©e Ă  la distribution de matiĂšre molĂ©culaire rĂ©partie dans la zone molĂ©culaire centrale (CMZ). Une partie importante de cette Ă©mission a donc trĂšs probablement une origine hadronique mais celle-ci reste toujours inconnue. Nous prĂ©sentons une nouvelle analyse spectrale et morphologique dĂ©taillĂ©e de la rĂ©gion en utilisant 10 ans de prise de donnĂ©es de H.E.S.S. ainsi qu’une modĂ©lisation de l'Ă©mission gamma induite par les SNe. Nous Ă©tudions l'impact de la distribution temporelle et spatiale des SNe dans le CMZ sur la morphologie et le spectre de l'Ă©mission: nous construisons un model 3D d'injection de CRs Ă  VHE et d'une propagation diffusive dans la rĂ©gion avec une distribution de gaz rĂ©aliste. La contribution des SNe ne peut pas ĂȘtre nĂ©gligĂ©e. Nous montrons qu’un profil piquĂ© de rayon gamma ainsi qu’un excĂšs de CRs vers le GC peuvent ĂȘtre obtenus en utilisant une distribution spatiale rĂ©aliste de SNe prenant en compte les amas d'Ă©toiles massives centraux. La morphologie de l'Ă©mission est trĂšs dĂ©pendante de l'Ă©nergie dans ce scĂ©nario. Le profil de densitĂ© de CRs peut Ă©galement ĂȘtre reproduit avec une injection stationnaire unique au centre par Sgr A* mais cela implique alors une morphologie stable en Ă©nergie. L'utilisation d'une analyse 3D est donc nĂ©cessaire pour distinguer les modĂšles. Nous prĂ©sentons les premiers rĂ©sultats de cette analyse que nous avons dĂ©veloppĂ© dans la librairie Gammapy afin d'ajuster simultanĂ©ment un spectre et une morphologie sur des donnĂ©es. Avec la prochaine gĂ©nĂ©ration d'instruments comme le Cherenkov Telescope Array, les observations de rĂ©gions avec une morphologie complexe, avec une Ă©mission diffuse ou de multiples sources, vont devenir de plus en plus nombreuses. Elles nĂ©cessitent donc Ă©galement le dĂ©veloppement de cette technique. Nous dĂ©taillons les premiĂšres validations de cette mĂ©thode appliquĂ©e sur des sources ponctuelles avec un outil Monte Carlo. Pour l’émission diffuse, nous prĂ©sentons le nouveau spectre obtenu en utilisant une mĂ©thode que nous avons dĂ©veloppĂ©e pour l’extraction spectrale 1D classique. Nous rĂ©alisons par ailleurs une analyse morphologique dans diffĂ©rentes bandes en Ă©nergie indĂ©pendantes en utilisant de nouveaux modĂšles spatiaux. Pour l'instant, aucune variation significative n'est dĂ©tectĂ©e mais des observations supplĂ©mentaires sont nĂ©cessaires ainsi qu'une vraie analyse 3D de la rĂ©gion du GC pour pouvoir donner une conclusion dĂ©finitive. Les observations de CTA permettront de donner des rĂ©ponses prĂ©cises Ă  ces questions

    The galactic center to vers high energies : diffuse emission modeling and first elements of spectromorphological analysis

    No full text
    Le centre Galactique (GC) est une rĂ©gion trĂšs riche et complexe. Le taux de supernovae (SN) associĂ© Ă  la formation d'Ă©toiles massives y est trĂšs Ă©levĂ©e et devrait crĂ©er une injection continue de rayons cosmiques (CRs) dans le GC Ă  travers les chocs qu'elles produisent. Cette rĂ©gion abrite Ă©galement un trou noir supermassif (SMBH) de 4 x 10⁶ M, nommĂ© Sgr A*. De nombreux arguments ont permis de montrer que le SMBH pouvait accĂ©lĂ©rer des particules Ă  trĂšs haute Ă©nergie (VHE); son activitĂ© actuelle et passĂ©e pourrait donc Ă©galement contribuer Ă  la population de CRs. En 2006, la collaboration H.E.S.S. a rĂ©vĂ©lĂ© la prĂ©sence d'une Ă©mission diffuse Ă  VHE dans les 100 pc centraux de la Galaxie, trĂšs corrĂ©lĂ©e Ă  la distribution de matiĂšre molĂ©culaire rĂ©partie dans la zone molĂ©culaire centrale (CMZ). Une partie importante de cette Ă©mission a donc trĂšs probablement une origine hadronique mais celle-ci reste toujours inconnue. Nous prĂ©sentons une nouvelle analyse spectrale et morphologique dĂ©taillĂ©e de la rĂ©gion en utilisant 10 ans de prise de donnĂ©es de H.E.S.S. ainsi qu’une modĂ©lisation de l'Ă©mission gamma induite par les SNe. Nous Ă©tudions l'impact de la distribution temporelle et spatiale des SNe dans le CMZ sur la morphologie et le spectre de l'Ă©mission: nous construisons un model 3D d'injection de CRs Ă  VHE et d'une propagation diffusive dans la rĂ©gion avec une distribution de gaz rĂ©aliste. La contribution des SNe ne peut pas ĂȘtre nĂ©gligĂ©e. Nous montrons qu’un profil piquĂ© de rayon gamma ainsi qu’un excĂšs de CRs vers le GC peuvent ĂȘtre obtenus en utilisant une distribution spatiale rĂ©aliste de SNe prenant en compte les amas d'Ă©toiles massives centraux. La morphologie de l'Ă©mission est trĂšs dĂ©pendante de l'Ă©nergie dans ce scĂ©nario. Le profil de densitĂ© de CRs peut Ă©galement ĂȘtre reproduit avec une injection stationnaire unique au centre par Sgr A* mais cela implique alors une morphologie stable en Ă©nergie. L'utilisation d'une analyse 3D est donc nĂ©cessaire pour distinguer les modĂšles. Nous prĂ©sentons les premiers rĂ©sultats de cette analyse que nous avons dĂ©veloppĂ© dans la librairie Gammapy afin d'ajuster simultanĂ©ment un spectre et une morphologie sur des donnĂ©es. Avec la prochaine gĂ©nĂ©ration d'instruments comme le Cherenkov Telescope Array, les observations de rĂ©gions avec une morphologie complexe, avec une Ă©mission diffuse ou de multiples sources, vont devenir de plus en plus nombreuses. Elles nĂ©cessitent donc Ă©galement le dĂ©veloppement de cette technique. Nous dĂ©taillons les premiĂšres validations de cette mĂ©thode appliquĂ©e sur des sources ponctuelles avec un outil Monte Carlo. Pour l’émission diffuse, nous prĂ©sentons le nouveau spectre obtenu en utilisant une mĂ©thode que nous avons dĂ©veloppĂ©e pour l’extraction spectrale 1D classique. Nous rĂ©alisons par ailleurs une analyse morphologique dans diffĂ©rentes bandes en Ă©nergie indĂ©pendantes en utilisant de nouveaux modĂšles spatiaux. Pour l'instant, aucune variation significative n'est dĂ©tectĂ©e mais des observations supplĂ©mentaires sont nĂ©cessaires ainsi qu'une vraie analyse 3D de la rĂ©gion du GC pour pouvoir donner une conclusion dĂ©finitive. Les observations de CTA permettront de donner des rĂ©ponses prĂ©cises Ă  ces questions.The Galactic center (GC) is a very rich and complex astrophysical region. The high supernovae (SN) rate associated with the strong massive star formation should create a sustained cosmic rays (CR) injection in the GC via the shocks they produce. This region also harbors a Super-Massive Black Hole (SMBH) of 4 x 10⁶ M, named Sgr A*. Since it has been argued that the SMBH might also accelerate particles up to very high energies (VHE), its current and past activity could contribute to the CR population. In 2006, the H.E.S.S. collaboration revealed the presence of a VHE diffuse emission in the inner 100 pc of the Galaxy in close correlation with the molecular matter spread in the central molecular zone (CMZ). A major part of this emission is thus certainly of hadronic origin but it still remains mysterious. We report a new detailed spectral and morphological analysis of this region using 10 years of H.E.S.S. observations as well as a detailed modelling of the gamma-ray emission induced by the SNe. We study the impact of the spatial and temporal distribution of SNe in the CMZ on the VHE emission morphology and spectrum: we built a 3D model of VHE CR injection and diffusive propagation with a realistic gas distribution. The contribution of SNe can not be neglected. We show that a peaked gamma-ray profile and CR excess towards the GC, can be obtained using realistic SN spatial distribution taking into account the central massive star clusters. A strong dependence on the morphology of the emission with the energy is expected in this scenario. The CR density profile can also be reproduced by a unique stationary injection at the center by Sgr A* but it implies a stable morphology across the energy range. To distinguish the models, we need a 3D analysis. We present the first results of this analysis that we started to design in the software Gammapy to simultaneously fit a spectral and morphological model to the data. The observations of complex morphological regions with diffuse emission or multiple sources will become more and more numerous with the next generation instruments such as the Cherenkov Telescope Array. They will also require the development of this technique. We detail the first validations of this method on point sources using a Monte Carlo tool. For the ridge emission, we report the new spectrum using a method that we developed for the classical spectral fitting necessary for faint emission. By using new spatial templates to describe the complexity of the diffuse emission, we perform a morphological analysis in different energy bands independently. No significant variation is found but more observations are needed to give a conclusive statement as well as a real 3D analysis in the GC region. The observations of CTA will allow to give precise answers to these questions

    A dynamical test for the terrestrial planets in the habitable zone of HD 204313

    No full text
    With improvements in exoplanet detection techniques, the number of multiple planet systems discovered is increasing, while the detection of potentially habitable Earth-mass planets remains complicated and thus requires new search strategies. Dynamical studies of known multiple planet systems are therefore a vital tool in the search for stable and habitable planet candidates. Here, we present a dynamical study of the three-planet system HD 204313 to determine whether it could harbour an Earth-like planet within its habitable zone for a sufficient time to develop life. We found two semi-stable regions in the system, but neither prove stable for long enough for a terrestrial planet to develop life. Our investigations suggest that overlapping weak and high order resonances may be responsible for these semi-stable regions. This study established a framework for a larger project that will study the dynamical stability of the habitable zone of multiple planet systems, providing a list of interesting targets for future habitable low-mass planet searches

    Towards a 3D analysis in Cherenkov Îł\gamma-ray astronomy

    No full text
    International audienceThe development of a 3D or cube analysis to simultaneously fit a spectral and morphological model to the data is a challenge in Cherenkov gamma-ray astronomy. The strong variation of the instrument response functions and of the residual cosmic rays background with the observation conditions makes it very difficult to build a coherent background model across the whole energy range. Nevertheless, with improving sensitivities and angular resolution of current Cherenkov telescopes and next generation instruments such as the Cherenkov Telescope Array, the complex morphology of the regions with diffuse emission or multiple sources requires the development of this technique. We developed a prototype for cube analysis along with corresponding background models for varying observations conditions.The prototype as well as the production of background model was implemented in the software Gammapy, an open source Python packagefor gamma-ray Astronomy that provides tools to simulate and analyse the gamma-ray sky for imaging atmospheric Cherenkov telescopes. To validate the method, we performed a systematic comparison between this cube analysis and the classical 1D spectral fitting on point sources using a Monte Carlo simulation from the H.E.S.S. collaboration
    corecore