14 research outputs found
Bisphenol-A exposure and risk of breast and prostate cancer in the Spanish European Prospective Investigation into Cancer and Nutrition study
Background: Bisphenol A (BPA) is an endocrine disruptor that it is present in numerous products of daily use. The aim of this study was to assess the potential association of serum BPA concentrations and the risk of incident breast and prostate cancer in a sub-cohort of the Spanish European Prospective Investigation into Cancer and Nutrition (EPIC). Methods: We designed a case-cohort study within the EPIC-Spain cohort. Study population consisted on 4812 participants from 4 EPIC-Spain centers (547 breast cancer cases, 575 prostate cancer cases and 3690 sub-cohort participants). BPA exposure was assessed by means of chemical analyses of serum samples collected at recruitment. Borgan II weighted Cox regression was used to estimate hazard ratios. Results: Median follow-up time in our study was 16.9 years. BPA geometric mean serum values of cases and sub-cohort were 1.12 ng/ml vs 1.10 ng/ml respectively for breast cancer and 1.33 ng/ml vs 1.29 ng/ml respectively for prostate cancer. When categorizing BPA into tertiles, a 40% increase in risk of prostate cancer for tertile 1 (p = 0.022), 37% increase for tertile 2 (p = 0.034) and 31% increase for tertile 3 (p = 0.072) was observed with respect to values bellow the limit of detection. No significant association was observed between BPA levels and breast cancer risk. Conclusions: We found a similar percentage of detection of BPA among cases and sub-cohort from our population, and no association with breast cancer risk was observed. However, we found a higher risk of prostate cancer for the increase in serum BPA levels. Further investigation is needed to understand the influence of BPA in prostate cancer risk
Inverse-probability weighting and multiple imputation for evaluating selection bias in the estimation of childhood obesity prevalence using data from electronic health records
Background and objectives: Height and weight data from electronic health records are increasingly being used
to estimate the prevalence of childhood obesity. Here, we aim to assess the selection bias due to missing weight
and height data from electronic health records in children older than five.
Methods: Cohort study of 10,811 children born in Navarra (Spain) between 2002 and 2003, who were still living in
this region by December 2016. We examined the differences between measured and non-measured children older
than 5 years considering weight-associated variables (sex, rural or urban residence, family income and weight status
at 2–5 yrs). These variables were used to calculate stabilized weights for inverse-probability weighting and to conduct
multiple imputation for the missing data. We calculated complete data prevalence and adjusted prevalence considering
the missing data using inverse-probability weighting and multiple imputation for ages 6 to 14 and group ages 6 to 9 and
10 to 14.
Results: For 6–9 years, complete data, inverse-probability weighting and multiple imputation obesity age-adjusted
prevalence were 13.18% (95% CI: 12.54–13.85), 13.22% (95% CI: 12.57–13.89) and 13.02% (95% CI: 12.38–13.66) and
for 10–14 years 8.61% (95% CI: 8.06–9.18), 8.62% (95% CI: 8.06–9.20) and 8.24% (95% CI: 7.70–8.78), respectively.
Conclusions: Ages at which well-child visits are scheduled and for the 6 to 9 and 10 to 14 age groups, weight
status estimations are similar using complete data, multiple imputation and inverse-probability weighting. Readily
available electronic health record data may be a tool to monitor the weight status in children
Codificación de las causas de muerte con el software Iris: impacto en las estadísticas de mortalidad de la Comunidad Foral de Navarra
ABSTRACT Background: There are few studies that analyze changes in mortality statistics derived from the use of IRIS software, an automatic system for coding multiple causes of death and for the selection of the underlying cause of death, compared to manual coding. This study evaluated the impact of the use of IRIS in the Navarre mortality statistic. Methods: We proceeded to double coding 5,060 death certificates corresponding to residents in Navarra in 2014. We calculated coincidence between the two encodings for ICD10 chapters and for the list of causes of the Spanish National Statistics Institute (INE-102) and we estimated the change on mortality rates. Results: IRIS automatically coded 90% of death certificates. The coincidence to 4 characters and in the same chapter of the CIE10 was 79.1% and 92.0%, respectively. Furthermore, coincidence with the short INE-102 list was 88.3%. Higher matches were found in death certificate of people under 65 years. In comparison with manual coding there was an increase in deaths from endocrine diseases (31%), mental disorders (19%) and disease of nervous system (9%), while a decrease of genitourinary system diseases was observed (21%). Conclusions: The coincidence at level of ICD10 chapters coding by IRIS in comparison to manual coding was 9 out of 10 deaths, similar to what is observed in other studies. The implementation of IRIS has led to increased of endocrine diseases, especially diabetes and hyperlipidaemia, and mental disorders, especially dementias.RESUMEN Fundamentos: Existen pocos estudios que analicen los cambios en las estadísticas de mortalidad derivados de la utilización del software IRIS para la codificación automática de la causa de muerte en comparación a la codificación manual. El objetivo de esta investigación fue evaluar el impacto del uso de IRIS en las estadísticas de mortalidad de Navarra. Métodos: Se procedió a una doble codificación de la causa básica de 5.060 boletines de defunción correspondientes a los fallecimientos de residentes en Navarra en 2014. Se establecieron las correspondencias entre ambas codificaciones para los capítulos de la CIE10 y la lista de causas INE-102 y se estimó el cambio en las tasas de mortalidad. Resultados: Con el software IRIS se codificaron automáticamente el 90% de las defunciones. Se observó una coincidencia a 4 caracteres y en el mismo capítulo de la CIE10 en el 79,1 y el 92,0% de los casos. La coincidencia para la lista reducida INE-102 fue del 88,3%. Se encontraron coincidencias más elevadas en las defunciones de personas menores de 65 años. Se observó un incremento de las muertes por enfermedades endocrinas (31%), trastornos mentales (19%) y enfermedades del sistema nervioso (9%), mientras que disminuyeron las enfermedades del sistema genitourinario (21%). Conclusiones: La coincidencia a nivel de los capítulos de CIE10 de la codificación con IRIS respecto a la manual se da en 9 de cada 10 defunciones. La implantación de IRIS comporta un incremento de las enfermedades endocrinas, fundamentalmente diabetes mellitus e hiperlipidemias, y de los trastornos mentales, fundamentalmente las demencias
Validity of type 2 diabetes diagnosis in a population-based electronic health record database
Abstract Background The increasing burden of type 2 diabetes mellitus makes the continuous surveillance of its prevalence and incidence advisable. Electronic health records (EHRs) have great potential for research and surveillance purposes; however the quality of their data must first be evaluated for fitness for use. The aim of this study was to assess the validity of type 2 diabetes diagnosis in a primary care EHR database covering more than half a million inhabitants, 97% of the population in Navarra, Spain. Methods In the Navarra EPIC-InterAct study, the validity of the T90 code from the International Classification of Primary Care, Second Edition was studied in a primary care EHR database to identify incident cases of type 2 diabetes, using a multi-source approach as the gold standard. The sensitivity, specificity, positive predictive value, negative predictive value and the kappa index were calculated. Additionally, type 2 diabetes prevalence from the EHR database was compared with estimations from a health survey. Results The sensitivity, specificity, positive predictive value and negative predictive value of incident type 2 diabetes recorded in the EHRs were 98.2, 99.3, 92.2 and 99.8%, respectively, and the kappa index was 0.946. Overall prevalence of type 2 diabetes diagnosed in the EHRs among adults (35–84 years of age) was 7.2% (95% confidence interval [CI] 7.2–7.3) in men and 5.9% (95% CI 5.8–5.9) in women, which was similar to the prevalence estimated from the health survey: 8.5% (95% CI 7.1–9.8) and 5.5% (95% CI 4.4–6.6) in men and women, respectively. Conclusions The high sensitivity and specificity of type 2 diabetes diagnosis found in the primary care EHRs make this database a good source for population-based surveillance of incident and prevalent type 2 diabetes, as well as for monitoring quality of care and health outcomes in diabetic patients
Exhaustividad de la estadística de mortalidad de Navarra
Background: Women in the region of Navarra, Spain, have one of the highest life expectancies at birth in Europe. The aim of this study is to assess the completeness of the official mortality statistics of Navarra in 2009 and the impact of the under-registration of deaths on life expectancy estimates. Methods: Comparison of the number of deaths in Navarra using the official statistics from the Instituto Nacional de Estadística (INE) and the data derived from a multiple-source case-finding: the electronic health record, Instituto Navarro de Medicina Legal and INE including data that they received late. Results: 5,249 deaths were identified, of which 103 were not included in the official mortality statistics. Taking into account only deaths that occurred in Spain, which are the only ones considered for the official statistics, the completeness was 98.4%. Estimated life expectancy at birth in 2009 descended from 86.6 years to 86.4 in women and from 80.0 to 79.6 years in men, after correcting for undercount. Conclusions: The results of this study ruled out the existence of significant under-registration of the official mortality statistics, confirming the exceptional longevity of women in Navarra, who are in the top position in Europe with a life expectancy at birth of 86.4 years.Fundamentos: La esperanza de vida al nacer de las mujeres de Navarra se encuentra entre las más altas de Europa. El objetivo del estudio es evaluar la exhaustividad de la estadística oficial de mortalidad de Navarra en 2009 y su impacto en la estimación de la esperanza de vida. Métodos: Se compara el número oficial de muertes del Instituto Nacional de Estadística (INE) con el obtenido mediante búsqueda en múltiples fuentes: historia clínica informatizada de atención especializada, Instituto Navarro de Medicina Legal e INE incluyendo defunciones recibidas con retraso. Resultados: Se contabilizaron 5.249 fallecimientos, de los cuales 103 no estaban incluidos en los datos oficiales del INE. Teniendo en cuenta únicamente las defunciones ocurridas en territorio español, que es a lo que hace referencia la estadística oficial de mortalidad, la exhaustividad fue del 98,4%. La esperanza de vida al nacer en el año 2009 descendió de de 86,6 a 86,4 años en las mujeres y de 80,0 a 79,6 años en los hombres tras corregir el subregistro. Conclusiones: Se descarta la existencia de un subregistro significativo en la estadística oficial de mortalidad y se confirma la elevada longevidad de las mujeres de Navarra que, con una esperanza de vida al nacer de 86,4 años, ocupan la primera posición en Europa
Inverse-probability weighting and multiple imputation for evaluating selection bias in the estimation of childhood obesity prevalence using data from electronic health records
Background and objectives: Height and weight data from electronic health records are increasingly being used
to estimate the prevalence of childhood obesity. Here, we aim to assess the selection bias due to missing weight
and height data from electronic health records in children older than five.
Methods: Cohort study of 10,811 children born in Navarra (Spain) between 2002 and 2003, who were still living in
this region by December 2016. We examined the differences between measured and non-measured children older
than 5 years considering weight-associated variables (sex, rural or urban residence, family income and weight status
at 2–5 yrs). These variables were used to calculate stabilized weights for inverse-probability weighting and to conduct
multiple imputation for the missing data. We calculated complete data prevalence and adjusted prevalence considering
the missing data using inverse-probability weighting and multiple imputation for ages 6 to 14 and group ages 6 to 9 and
10 to 14.
Results: For 6–9 years, complete data, inverse-probability weighting and multiple imputation obesity age-adjusted
prevalence were 13.18% (95% CI: 12.54–13.85), 13.22% (95% CI: 12.57–13.89) and 13.02% (95% CI: 12.38–13.66) and
for 10–14 years 8.61% (95% CI: 8.06–9.18), 8.62% (95% CI: 8.06–9.20) and 8.24% (95% CI: 7.70–8.78), respectively.
Conclusions: Ages at which well-child visits are scheduled and for the 6 to 9 and 10 to 14 age groups, weight
status estimations are similar using complete data, multiple imputation and inverse-probability weighting. Readily
available electronic health record data may be a tool to monitor the weight status in children
Programa de ayuda para dejar de fumar en Navarra: 25 años de andadura
In Navarre, the Smoking Cessation Program (PAF) was launched in 1994, result of the collaboration between Public Health and Primary Care. In 2001 it was integrated into the Tobacco Regional Action Plan, together with the other two lines of action: prevention of smoking initiation and promo- tion of smoke-free spaces. PAF includes two levels of in- tervention, a basic and an intensive one, with programmed educational support, individual and group. Medications for smoking cessation have been intermittently subsidized by the Health Department of Navarre. In December 2017, fun- ding of medications for smoking cessation was reintroduced, in the same conditions of any other medication. Treatments are limited to one per patient and year, always including edu- cational support. In 2018, 6139 people benefited from this funding, 50% women and 60% with yearly income lower than 18000 euros. We carried out a preliminary evaluation through a telephone survey. Overall, 35% of participants reported to keep abstinent after one year, 40% among those who also received intensive educational support.En Navarra el Programa de Ayuda a Dejar de Fumar (PAF) nace en 1994 fruto de la colaboración entre Salud Pública y Atención Primaria y desde 2001 se integra en el Plan Foral de Acción sobre el Tabaco, junto con otras dos líneas de actuación: prevención al inicio y espacios sin humo. El PAF incluye dos niveles de intervención, básico e intensivo, con apoyo educativo programado individual y grupal y periodos de financiación farmaco- lógica. En diciembre de 2017 se reintrodujo la financia- ción de los fármacos para la deshabituación tabáquica en las mismas condiciones que el resto de medicamentos, limitada a un tratamiento por paciente y año, siempre en el contexto de un programa de apoyo educativo. En
2018 se beneficiaron de la financiación 6.139 personas, la mitad mujeres y 6 de cada 10 con rentas inferiores a 18.000 euros. Los resultados de la evaluación preli- minar, realizada mediante encuesta telefónica, muestran una tasa declarada de abandono al año del 35%, que as- ciende al 40% si se recibe apoyo educativo
Geographical Variability in Mortality in Urban Areas: A Joint Analysis of 16 Causes of Death
The geographical distribution of mortality has frequently been studied. Nevertheless, those studies often consider isolated causes of death. In this work, we aim to study the geographical distribution of mortality in urban areas, in particular, in 26 Spanish cities. We perform an overall study of 16 causes of death, considering that their geographical patterns could be dependent and estimating the dependence between the causes of death. We study the deaths in these 26 cities during the period 1996–2015 at the census tract level. A multivariate disease mapping model is used in order to solve the potential small area estimation problems that these data could show. We find that most of the geographical patterns found show positive correlations. This suggests the existence of a transversal geographical pattern, common to most causes of deaths, which determines those patterns to a higher/lower extent depending on each disease. The causes of death that exhibit that underlying pattern in a more prominent manner are chronic obstructive pulmonary disease (COPD), lung cancer, and cirrhosis for men and cardiovascular diseases and dementias for women. Such findings are quite consistent for most of the cities in the study. The high positive correlation found between geographical patterns reflects the existence of both high and low-risk areas in urban settings, in general terms for nearly all the causes of death. Moreover, the high-risk areas found often coincide with neighborhoods known for their high deprivation. Our results suggest that dependence among causes of death is a key aspect to be taken into account when mapping mortality, at least in urban contexts.The authors acknowledge the support of the research grants PI16/00670, PI16/00755, PI16/01004, PI16/01187, PI16/01273, PI16/01281, and PI18/01313 of Instituto de Salud Carlos III, co-funded with FEDER grants
Observatorio de Salud Comunitaria de Navarra: Puesta en marcha y primeras experiencias
Background: The Community Health Observatory
of Navarre (Observatorio de Salud Comunitaria
de Navarra) was created in 2016 to study health determinants,
results and inequalities. The objective of this
article was to describe the methodology and the process
followed to launch it, and to analyse the variation
of the selected indicators among Basic Health Zones.
Methods: The observatory configuration was
specified and the selected indicators and their variation
among zones were described.
Results: During the period under consideration,
the observatory interacted with many institutions,
some of them provide information and others receive
it. One of the main outcomes was the Profile Reports
by Basic Health Zone, which included a selection of
21 indicators by zone related to socio-demographic
factors, lifestyles, morbidity, Health System and mortality.
The coefficients of variation among zones ranged
between 0.01 and 0.7, showing the socio-demographic
factors the greatest variation.
Conclusions: This project, in line with other observatories,
sets a system of comparison with health
determinants and results in small areas. The selected
indicators capture variation among zones, generating
specific pictures. This is the starting point for future
interventions in coordination with Primary Health
Care, social agents and health assets.Fundamentos: El Observatorio de Salud
Comunitaria de Navarra se creó en 2016 para estudiar
los determinantes, resultados y desigualdades en
salud. El objetivo de este artículo fue describir la metodología
y el proceso seguidos para su puesta en marcha,
así como analizar la variabilidad de los indicadores
seleccionados entre Zonas Básicas de Salud.
Métodos: Se especificó la configuración del observatorio
y se describieron estadísticamente los indicadores
seleccionados y su variabilidad entre zonas.
Resultados: Durante el periodo considerado, el
observatorio interactuó con diferentes instituciones,
unas como proveedoras de información y otras como
usuarias de la misma. Uno de sus principales productos
fueron los Informes de Perfil de Zona Básica de
Salud, que incluyeron para cada zona una selección
de 21 indicadores agrupados en: factores sociodemográficos,
estilos de vida, morbilidad, sistema de salud
y mortalidad. Los coeficientes de variación entre zonas
de los indicadores se encontraron entre 0,01 y 0,7,
siendo los que aluden a factores sociodemográficos
los de mayor variabilidad.
Conclusiones: Esta experiencia comparte con
otras similares el establecimiento de un sistema de
comparación de determinantes y resultados de salud
en áreas pequeñas. Los indicadores seleccionados
captan la variabilidad entre zonas, devolviendo una
imagen específica de las mismas. A partir de sus productos
se abren posibilidades de intervención en coordinación
con Atención Primaria, los agentes sociales y
los activos de salud