7 research outputs found

    Disseminated toxoplasmosis associated with hemophagocytic syndrome after kidney transplantation: A case report and review

    No full text
    International audienceDisseminated toxoplasmosis is infrequent after kidney transplant transmission but life‐threatening because of a lack of diagnostic suspicion as well as specific chemoprophylaxis recommendations. Solid organ transplantation has resulted in few cases of disseminated toxoplasmosis presenting with associated hemophagocytic syndrome. Herein, we report, within the context of a donor/receiver mismatch, a case of a toxoplasmosis associated with hemophagocytic syndrome in a kidney transplant recipient. Molecular and serological investigations confirmed Toxoplasma gondii transmission through the kidney graft

    PfEMP1 A-Type ICAM-1-Binding Domains Are Not Associated with Cerebral Malaria in Beninese Children

    No full text
    International audiencePfEMP1 is the major antigen involved in Plasmodium falciparum-infected erythrocyte sequestration in cerebrovascular endothelium. While some PfEMP1 domains have been associated with clinical phenotypes of malaria, formal associations between the expression of a specific domain and the adhesion properties of clinical isolates are limited. In this context, 73 cerebral malaria (CM) and 98 uncomplicated malaria (UM) Beninese children were recruited. We attempted to correlate the cytoadherence phenotype of Plasmodium falciparum isolates with the clinical presentation and the expression of specific PfEMP1 domains. Cytoadherence level on Hbec-5i and CHO-ICAM-1 cell lines and var genes expression were measured. We also investigated the prevalence of the ICAM-1-binding amino acid motif and dual receptor-binding domains, described as a potential determinant of cerebral malaria pathophysiology. We finally evaluated IgG levels against PfEMP1 recombinant domains (CIDRα1.4, DBLÎČ3, and CIDRα1.4-DBLÎČ3). CM isolates displayed higher cytoadherence levels on both cell lines, and we found a correlation between CIDRα1.4-DBLÎČ1/3 domain expression and CHO-ICAM-1 cytoadherence level. Endothelial protein C receptor (EPCR)-binding domains were overexpressed in CM isolates compared to UM whereas no difference was found in ICAM-1-binding DBLÎČ1/3 domain expression. Surprisingly, both CM and UM isolates expressed ICAM-1-binding motif and dual receptor-binding domains. There was no difference in IgG response against DBLÎČ3 between CM and UM isolates expressing ICAM-1-binding DBLÎČ1/3 domain. It raises questions about the role of this motif in CM pathophysiology, and further studies are needed, especially on the role of DBLÎČ1/3 without the ICAM-1-binding motif.IMPORTANCE Cerebral malaria pathophysiology remains unknown despite extensive research. PfEMP1 proteins have been identified as the main Plasmodium antigen involved in cerebrovascular endothelium sequestration, but it is unclear which var gene domain is involved in Plasmodium cytoadhesion. EPCR binding is a major determinant of cerebral malaria whereas the ICAM-1-binding role is still questioned. Our study confirmed the EPCR-binding role in CM pathophysiology with a major overexpression of EPCR-binding domains in CM isolates. In contrast, ICAM-1-binding involvement appears less obvious with A-type ICAM-1-binding and dual receptor-binding domain expression in both CM and UM isolates. We did not find any variations in ICAM-1-binding motif sequences in CM compared to UM isolates. UM and CM patients infected with isolates expressing the ICAM-1-binding motif displayed similar IgG levels against DBLÎČ3 recombinant protein. Our study raises interrogations about the role of these domains in CM physiopathology and questions their use in vaccine strategies against cerebral malaria. Copyrigh

    Transcriptome Analysis of Plasmodium falciparum Isolates From Benin Reveals Specific Gene Expression Associated With Cerebral Malaria

    No full text
    International audienceAbstract Cerebral malaria (CM) is the severest form of Plasmodium falciparum infection. Children under 5 years old are those most vulnerable to CM, and they consequently have the highest risk of malaria-related death. Parasite-associated factors leading to CM are not yet fully elucidated. We therefore sought to characterize the gene expression profile associated with CM, using RNA sequencing data from 15 CM and 15 uncomplicated malaria isolates from Benin. Cerebral malaria parasites displayed reduced circulation times, possibly related to higher cytoadherence capacity. Consistent with the latter, we detected increased var genes abundance in CM isolates. Differential expression analyses showed that distinct transcriptome profiles are signatures of malaria severity. Genes involved in adhesion, excluding variant surface antigens, were dysregulated, supporting the idea of increased cytoadhesion capacity of CM parasites. Finally, we found dysregulated expression of genes in the entry into host pathway that may reflect greater erythrocyte invasion capacity of CM parasites

    Infected erythrocytes and plasma proteomics reveal a specific protein signature of severe malaria

    No full text
    International audienceAbstract Cerebral malaria (CM), the most lethal complication of Plasmodium falciparum severe malaria (SM), remains fatal for 15–25% of affected children despite the availability of treatment. P. falciparum infects and multiplies in erythrocytes, contributing to anemia, parasite sequestration, and inflammation. An unbiased proteomic assessment of infected erythrocytes and plasma samples from 24 Beninese children was performed to study the complex mechanisms underlying CM. A significant down-regulation of proteins from the ubiquitin–proteasome pathway and an up-regulation of the erythroid precursor marker transferrin receptor protein 1 ( TFRC ) were associated with infected erythrocytes from CM patients. At the plasma level, the samples clustered according to clinical presentation. Significantly, increased levels of the 20S proteasome components were associated with SM. Targeted quantification assays confirmed these findings on a larger cohort ( n = 340). These findings suggest that parasites causing CM preferentially infect reticulocytes or erythroblasts and alter their maturation. Importantly, the host plasma proteome serves as a specific signature of SM and presents a remarkable opportunity for developing innovative diagnostic and prognostic biomarkers

    Evaluation of two commercial kits and two laboratory-developed qPCR assays compared to LAMP for molecular diagnosis of malaria

    No full text
    International audienceAbstract Background Malaria is an infectious disease considered as one of the biggest causes of mortality in endemic areas. This life-threatening disease needs to be quickly diagnosed and treated. The standard diagnostic tools recommended by the World Health Organization are thick blood smears microscopy and immuno-chromatographic rapid diagnostic tests. However, these methods lack sensitivity especially in cases of low parasitaemia and non-falciparum infections. Therefore, the need for more accurate and reliable diagnostic tools, such as real-time polymerase chain reaction based methods which have proven greater sensitivity particularly in the screening of malaria, is prominent. This study was conducted at the French National Malaria Reference Centre to assess sensitivity and specificity of two commercial malaria qPCR kits and two in-house developed qPCRs compared to LAMP. Methods 183 blood samples received for expertise at the FNMRC were included in this study and were subjected to four different qPCR methods: the Biosynex Ampliquick Âź Malaria test, the BioEvolution Plasmodium Typage test, the in-house HRM and the in-house TaqMan qPCRs. The specificity and sensitivity of each method and their confidence intervals were determined with the LAMP-based assay AlethiaÂź Malaria as the reference for malaria diagnosis. The accuracy of species diagnosis of the Ampliquick Âź Malaria test and the two in-house qPCRs was also evaluated using the BioEvolution Plasmodium Typage test as the reference method for species identification. Results The main results showed that when compared to LAMP, a test with excellent diagnostic performances, the two in-house developed qPCRs were the most sensitive (sensitivity at 100% for the in-house TaqMan qPCR and 98.1% for the in-house HRM qPCR), followed by the two commercial kits: the Biosynex Ampliquick Âź Malaria test (sensitivity at 97.2%) and the BioEvolution Plasmodium Typage (sensitivity at 95.4%). Additionally, with the in-house qPCRs we were able to confirm a Plasmodium falciparum infection in microscopically negative samples that were not detected by commercial qPCR kits. This demonstrates that the var genes of P. falciparum used in these in-house qPCRs are more reliable targets than the 18S sRNA commonly used in most of the developed qPCR methods for malaria diagnosis. Conclusion Overall, these results accentuate the role molecular methods could play in the screening of malaria. This may represent a helpful tool for other laboratories looking to implement molecular diagnosis methods in their routine analysis, which could be essential for the detection and treatment of malaria carriers and even for the eradication of this disease
    corecore