3,090 research outputs found

    Detuning-dependent Properties and Dispersion-induced Instabilities of Temporal Dissipative Kerr Solitons in Optical Microresonators

    Full text link
    Temporal-dissipative Kerr solitons are self-localized light pulses sustained in driven nonlinear optical resonators. Their realization in microresonators has enabled compact sources of coherent optical frequency combs as well as the study of dissipative solitons. A key parameter of their dynamics is the effective-detuning of the pump laser to the thermally- and Kerr-shifted cavity resonance. Together with the free spectral range and dispersion, it governs the soliton-pulse duration, as predicted by an approximate analytical solution of the Lugiato-Lefever equation. Yet, a precise experimental verification of this relation was lacking so far. Here, by measuring and controlling the effective-detuning, we establish a new way of stabilizing solitons in microresonators and demonstrate that the measured relation linking soliton width and detuning deviates by less than 1 % from the approximate expression, validating its excellent predictive power. Furthermore, a detuning-dependent enhancement of specific comb lines is revealed, due to linear couplings between mode-families. They cause deviations from the predicted comb power evolution, and induce a detuning-dependent soliton recoil that modifies the pulse repetition-rate, explaining its unexpected dependence on laser-detuning. Finally, we observe that detuning-dependent mode-crossings can destabilize the soliton, leading to an unpredicted soliton breathing regime (oscillations of the pulse) that occurs in a normally-stable regime. Our results test the approximate analytical solutions with an unprecedented degree of accuracy and provide new insights into dissipative-soliton dynamics.Comment: Updated funding acknowledgement

    Molecular Beams

    Get PDF
    Contains research objectives, summary of research and reports on eight research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-030

    Molecular assays for the detection of prostate tumor derived nucleic acids in peripheral blood

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostate cancer is the second leading cause of cancer mortality in American men. Although serum PSA testing is widely used for early detection, more specific prognostic tests are needed to guide treatment decisions. Recently, the enumeration of circulating prostate epithelial cells has been shown to correlate with disease recurrence and metastasis following definitive treatment. The purpose of our study was to investigate an immunomagnetic fractionation procedure to enrich circulating prostate tumor cells (CTCs) from peripheral blood specimens, and to apply amplified molecular assays for the detection of prostate-specific markers (PSA, PCA3 and TMPRSS2:ERG gene fusion mRNAs).</p> <p>Results</p> <p>As few as five prostate cancer cells were detected per 5 mL of whole blood in model system experiments using anti-EpCAM magnetic particles alone or in combination with anti-PSMA magnetic particles. In our experiments, anti-EpCAM magnetic particles alone exhibited equivalent or better analytical performance with patient samples compared to a combination of anti-EpCAM + anti-PSMA magnetic particles. Up to 39% of men with advanced prostate cancer tested positive with one or more of the molecular assays tested, whereas control samples from men with benign prostate hyperplasia gave consistently negative results as expected. Interestingly, for the vast majority of men who tested positive for PSA mRNA following CTC enrichment, their matched plasma samples also tested positive, although CTC enrichment gave higher overall mRNA copy numbers.</p> <p>Conclusion</p> <p>CTCs were successfully enriched and detected in men with advanced prostate cancer using an immunomagnetic enrichment procedure coupled with amplified molecular assays for PSA, PCA3, and TMPRSS2:ERG gene fusion mRNAs. Our results indicate that men who test positive following CTC enrichment also exhibit higher detectable levels of non-cellular, circulating prostate-specific mRNAs.</p

    Atmospheric Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the Remote Troposphere.

    Get PDF
    We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models

    In search of the authentic nation: landscape and national identity in Canada and Switzerland

    Get PDF
    While the study of nationalism and national identity has flourished in the last decade, little attention has been devoted to the conditions under which natural environments acquire significance in definitions of nationhood. This article examines the identity-forming role of landscape depictions in two polyethnic nation-states: Canada and Switzerland. Two types of geographical national identity are identified. The first – what we call the ‘nationalisation of nature’– portrays zarticular landscapes as expressions of national authenticity. The second pattern – what we refer to as the ‘naturalisation of the nation’– rests upon a notion of geographical determinism that depicts specific landscapes as forces capable of determining national identity. The authors offer two reasons why the second pattern came to prevail in the cases under consideration: (1) the affinity between wild landscape and the Romantic ideal of pure, rugged nature, and (2) a divergence between the nationalist ideal of ethnic homogeneity and the polyethnic composition of the two societies under consideration

    Fine particle pH and sensitivity to NH3 and HNO3 over summertime South Korea during KORUS-AQ

    Get PDF
    Using a new approach that constrains thermodynamic modeling of aerosol composition with measured gas-to-particle partitioning of inorganic nitrate, we estimate the acidity levels for aerosol sampled in the South Korean planetary boundary layer during the NASA/NIER KORUS-AQ field campaign. The pH (mean ± 1σ = 2.43 ± 0.68) and aerosol liquid water content determined were then used to determine the chemical regime of the inorganic fraction of particulate matter (PM) sensitivity to ammonia and nitrate availability. We found that the aerosol formation is always sensitive to HNO3 levels, especially in highly polluted regions, while it is only exclusively sensitive to NH3 in some rural/remote regions. Nitrate levels are further promoted because dry deposition velocity is low and allows its accumulation in the boundary layer. Because of this, HNO3 reductions achieved by NOx controls prove to be the most effective approach for all conditions examined, and that NH3 emissions can only partially affect PM reduction for the specific season and region. Despite the benefits of controlling PM formation to reduce ammonium-nitrate aerosol and PM mass, changes in the acidity domain can significantly affect other processes and sources of aerosol toxicity (such as e.g., solubilization of Fe, Cu and other metals) as well as the deposition patterns of these trace species and reactive nitrate
    corecore