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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

1. Molecular Microscopy

There are, in a broad sense, three kinds of microscopy characterized by the par-
ticles which carry information concerning the sample to the observer. Photons and
charged particles have been extensively used in well-known ways, but the possibility
of obtaining information from neutral molecules emitted by a sample in vacuum has

apparently not been exploited to any significant degree. The idea of building a micro-

scope that uses neutral molecules to obtain an image arose naturally from our studies
of evaporation from liquid helium, but the molecular microscope, although useful in

many fields of science and engineering, seems likely to prove most important in bio-
logical applications. This is because molecules carrying information from the sample

interact through the same weak forces that are significant in biological interactions, and

because the interactions are highly surface-specific (in contrast to photons and elec-

trons which penetrate many atomic layers).

The object of our work in microscopy is (i) to study surface variations of weak

forces (sites) by desorbing previously adsorbed neutral molecules by means of a tech-

nique that we call neutral molecule surface staining; (ii) to develop a new form of micro-

probe that is likely to be competitive with the ion and x-ray devices already in

existence; and (iii) to study emissions of vapor and gas from biological samples. These
emissions may occur spontaneously or as a result of electrical, chemical, or radia-
tion stimuli.

There are many forms that this instrumentation can take, depending on the problem
to be studied. Different provisions can be made for dead or live samples. Frog skin
has been kept alive in one apparatus, and water emissions observed; the diffusion
of water through tooth enamel has also been observed. The instrument can be built to
have spatial resolution of varying degrees, temporal resolution, or mass resolu-
tion (i. e. , the identification of emerging molecules by ionizing them and identifying them

mass spectrometrically). The neutral emissions from the sample may occur simply

as a result of the temperature of the sample, or after heating small areas with beams
of charged particles or light, in which case the resolution can be that associated with

the stimulating beam. A considerable pressure of water vapor in the apparatus is

permissible, as long as excessive scattering does not take place. This tolerance may

make possible the study of delicate biological samples with simultaneous spatial, tem-

poral, and mass resolution, without excessive denaturing by dehydration.

In order to carry out this work, we are setting up cooperative programs with various

This work was supported by the Joint Services Electronics Programs (U. S. Army,
U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300.
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scientists in the Boston area. Our collaborators include Dr. S. Caplan (Harvard Med-
ical School), A. Essig (New England Medical Center), and P. Robbins and D. Waugh
(Department of Biology, M. I. T.).

2. Low-Temperature Atomic Beam Studies

Most of the low-temperature atomic beam studies that have been the focus of our
interest in the last five years have been completed, and publications have been, or are
being, prepared. Preliminary results have been obtained in two experiments: one
in which pulses of heat stimulate evaporation in liquid helium, and another in which the
dynamics of surface coverage by fractional monolayers on various substrates are studied
by our techniques. We cannot afford the manpower and the expense of continuing
this research, even though it has just reached the point of being well-developed tech-
nically and is of great interest. It seems likely that it will be taken up elsewhere. From
our point of view, the fact that it has led to the development of molecular microscopy
will perhaps have been its greatest value.

3. Electron Microscopy

The high-resolution high-contrast electron microscopy project that involves the
development of new kinds of electron lenses using foils continues. Computation have
been extended, and experimental studies have begun, of possible lens configurations,
and of radiation damage that might prove troublesome as one attempts high resolution.

J. G. King

A. IN SITU MEASUREMENT OF VAPOR PRESSURE ABOVE

SUBMONOLAYER HELIUM FILMS ON AN ARGON-

COATED SUBSTRATE

1. Introduction

In recent years, research on helium submonolayers has proceeded rapidly, in part

because of the simplicity of the helium substrate system. In principle, precise numer-

ical calculations based on various theoretical models can be compared with experi-

mental data. Also, the study of helium is made more attractive by its characteristically

weak interactions, low temperatures, small atomic mass, and isotopic effects. These

indicate the possibility of cooperative quantum, as well as classical, phenomena.

Until recently, adsorption isothermsZ and specific-heat 3 experiments were the

source of measurements of the properties of submonolayer helium films. In 1970, how-

ever, Wallace and Goodstein4 published data on adsorption isosteres, that is, measure-

ments of pressure vs temperature at constant film coverage. Their data allowed

immediate calculation of the isosteric heat of adsorption, QST' and the differential molar

entropy, (DS/3n)6, two quantities that previously were obtained through indirect and

imprecise convolution of isotherm data. Without knowing of their results, we under-

took measurements of adsorption isosteres using different experimental techniques.

QPR No. 104 2



(I. MOLECULAR BEAMS)

Preliminary results are reported to show the workability and advantages of our

technique.

2. Theory

The pressure-temperature-coverage relation of an adsorbed layer in equilibrium

with its gas phase can be derived from statistical mechanics. The relation is dependent

on a model of the adatoms on the surface. The two most contrary models are complete

localization (Langmuir) and complete mobility (Hill). 5 The P-T relationships are the

following.

Localized

3 / 2(2n-m) 521 0
P = 3 (kT)5/2 exp(-Q/T) 1 exp(ezV/kT),

h n

where

Z = number of nearest neighbors

V = energy of interaction between nearest neighbors

IMV = mass of adatom

Q = energy of adsorption of single atom in the limit of 0 0, T - O0K

0 = fraction of a monolayer.

Mobile

(2rm )  3/2 01 1 2a_

P hb (kT) exp(-Q/T) exphb in - 0 1 -8 bkTn

where jn = partition function for the vibration of an adsorbed atom perpendicular to the

surface.

The adsorbed atoms obey a two-dimensional van der Waals equation

+ a 2 (A-Nb) = NkT.
A2

In the limit of low temperatures, the exponential term dominates the relation, and

the power of the temperature is not discernible. Thus we cannot immediately use

pressure-temperature data to choose the correct model. Yet the isosteric heat of

adsorption and the differential molar entropy can still be obtained. The heat of

adsorption can be used to determine the interaction of adatoms with each other, the

a/b and ZV terms in the two different equations. These two-dimensional van der Waals
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constants can then be compared with three-dimensional ones. The differential molar

entropy can be integrated to yield the total absolute entropy, which can be compared

with specific-heat data.

The differential molar entropy, (8S/8n)0, is given by

( S)= -RT In P + SG,

where SG = 3/2 R ln T is the entropy of the gas phase. We assume that T varies

so slightly that its power-law dependence is excluded from consideration, as in our data

where T varies from 1. 3°K to 2. 1°K and QST is approximately 700K/atom.

3. Apparatus and Procedures

The apparatus is a 5-liter brass can containing an Allen-type electron multiplier

and a field-ionization needle. The can is evacuated to P = 1 X 10- 7 Torr and slowly

cooled to 77°K. Enough argon is admitted to cover the macroscopic internal area of

the can and its contents with 5 layers of atoms. The argon is allowed to equilibrate at

770 K for 10 hours. Adsorption isotherms under similar conditions by previous

researchers show the formation of a complete monolayer of argon. Next the can is

cooled in 1 hour to a temperature of 4. 20K, and a calibrated amount of He4 is then

admitted to the can. The amount is approximately enough to cover 1/2 of the macro-

scopic area with helium atoms. (The density of a completed monolayer, as determined
8 14 2chfacessthe

by other researchers, is 7. 8 X 10 atoms/cm2.) The field ionizer, which faces the

first dynode of the multiplier, is raised to +10 kV. Helium atoms in the gas phase that

come within -1000 A of the tip are ionized, and accelerated to the first dynode. Elec-

tron multiplication takes place. The pulses are amplified and counted by using standard

pulse-counting techniques. The count rate (C. R.) is recorded at various temperatures.
P (Torr)

It is related to the pressure by the formula: C. R. = K , where K is approxi-
T (oK)

+12 1/2 9mately 2 X 10 (K) //Torr sec. (Previous experiments have shown that the

sensitivity of the needle is not greater for slow atoms than fast ones.)-o
Because the pressure at most is 10 Torr at 4°K with monolayer coverage, the

number of atoms in the gas phase is 1.3 X 1016 atoms, while the number of adsorbed

atoms is approximately 2 X 1018. Consequently, as the can cools down, the areal density
of atoms on the surface changes little, and thus the process is isosteric.

The data are plotted in the form In (C. R.) T1/2 vs 1/T, the slope of which is QST
The differential molar entropy is the slope of ln (T1/2C. R.) vs ln T. The slopes are
determined by a least-squares fit. The error in the slope is determined by repeating

the runs and using an eyeball fit to set upper and lower limits on the slopes
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of the numerous runs.

Equilibration times between temperature changes are of the order of 15 min, which

is 5 times as long as necessary for restabilizing the helium bath temperature within a

millidegree (below the X-point) by using a servo-controlled pumping line and heater.

This time allows the unadsorbed helium atoms in excess of 106 collisions with the

walls to thermalize. Calculations show that the brass can is within 10-3 °K of bath tem-

perature after 10 seconds. Measurement of the temperatures of the electron mul-

tiplier and field-ionization detector show that they do not get colder than 10 0 K. They

are isolated from the bath and do not follow its variations over the time scale of data

taking.

4. Results

Data for 3 runs at the same coverage are plotted in Figs. I- 1 and 1-2. Figure I- I shows

the isosteric heat; Fig. I-2 shows the differential molar entropy; and Fig. I-3 shows

0 RUN 1

RUN 2

O RUN 3

\A

Fig. I-i.

Three runs taken with -1 monolayer coverage in the
apparatus. Slope = QST = 61. 5 ± . 8 0 K/atom.

0.50 0.54

1 (oK)-1

0.58 0.62

the isosteric heat of adsorption QST and differential molar entropy of He 4 on argon-

coated brass. Three runs were taken at each of 3 different coverages. The absolute
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Fig. I-2.

Three runs taken with -1 monolayer coverage
(aS/an) - S Gin the apparatus. Slope =

28. 1 ± 4. 1.

0.56 0.60 0.64 0.68 0.72 0.76

&. T

20 H

0.5 1.0 1.5
COVERAGE (1 COMPLETE MONALAYER)

40

30

z

20

O

10

Fig. 1-3. Isosteric heat of adsorption, QST' and differential molar entropy, R,

of He 4 on argon-coated brass, taken with 3 different coverages. The
absolute coverage is unknown, but it is estimated that a complete
monolayer equals 1.
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coverage has not been determined because of the small surface area of the can. Compari-

son of these data (under the assumption of a microscopic surface area equal to the macro-

scopic area)with those of Wallace and Goodstein(see Fig. I-4)who used a copper sponge

110

100

(OK)

50 T

40 -

30 - BET Nm (ARGON)

20-

10 - BULK LATENT HEAT
I IOF HELIUM-FOUR

O 10 20 30 40

N(STPcm 3 )

Fig. 1-4. Isosteric heat of adsorption vs coverage in the first two layers

of He 4 adsorbed on one layer of argon. High coverage data
4

marked by X. [From Fig. 5 in Wallace and Goodstein, repro-
duced with the permission of the Journal of Low Temperature
Physics.]

coated with argon as a substrate and an ion gauge as a detector, shows the similarity in

shape and absolute value. Wallace and Goodstein find heats of adsorption at 0= 1/2 for He

on other noble-gas-coated copper sponges to be in the same range, 700K/atom to

1100K/atom. The major reason for comparing our data with Wallace and Goodstein' s

is to emphasize the workability of our method. Also, the field-ionization detector can

function in the pressure range 10 to 10 - 13 Torr, thereby extending data to much lower

coverages, pressures, and temperatures. These measurements are performed in situ;

hence, uncertainties in the Weber-Schmidt equation, caused by conditions of the sur-

face of the tube connecting the pressure sensor to the apparatus, are eliminated. Thus

the previously inaccessible region of ultralow coverage is available for experiments with

adsorption isosteres and isotherms.

S. A. Cohen
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B. MEASUREMENT OF He 3-He3 AND He 4-He4 CROSS SECTIONS

AT LOW TEMPERATURES

1. Introduction

We have performed atomic-beam scattering experiments on He 3 and He 4 isotopes

in the temperature range 1. 5 0K to 2. 1°K, extending the work of D. E. Oates.1 The data

on He4-He4 yield a total cross section of 128 ± 17 A in agreement with that previously

reported by Oates and King.1 The He3-He3 total cross section is 87. 7 ± 9 A2. The
velocity-dependent cross sections of both have also been obtained.

2. Apparatus and Procedures

The novel components of the apparatus have been described previously.2 The prin-

cipal features are common to many atomic-beam attenuation experiments. A helium

beam is sent through a chopper and then through a gas-filled scattering chamber. The

arrival of helium atoms that have passed through the scattering chamber is detected by

a field ionizer and recorded by a multichannel scaler as a function of time. Compari-

son of beam intensities for runs with the scattering chamber full and empty yield the

scattering cross section.

Calculated cross sections comply with those defined by Berkling et al.3 We use the

basic attenuation formula for a velocity-analyzed beam of intensity Io(v) passing through

a scattering chamber of length L filled with gas at a temperature, T, and number den-

sity, n,

I(v) = Io(v) exp[-Ln Qeff(v, T)].

Qeff(v, T) is related to the actual cross section Q(g) derived from partial wave

analysis applied to a particular interatomic potential by
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eff(v, T) = Q(g) 3 exp(-v/a2) sin 0 k dOkdgkd k'V 3/2 a

2k T
where subscript k refers to the scattering gas g = v - vk, and a m The total

cross section, Qeff' is given by

Qeff = Qeff(v, T) f(v) dv,

where f(v) is the velocity distribution in the beam.

3. He4-He 4 Results

Runs were made at 2. 110 K and 1. 75 0 K. The data at 2. 110 K yield a total cross
OZ  er 1  i 2

section, Qe' of 128 ± 17 A , in agreement with that reported earlier, 144 ± 16 A

The 13% error in the data is calculated on a basis of statistics (8%) and estimated

systematic errors. The velocity-dependent cross section data at 2. 110 K is pre-

sented in Fig. 1-5, together with the earlier data of Oates. The error bars are cal-

culated from the actual scatter in the data. The uncertainty in velocity resolution,

because of finite widths of the aperture function and multichannel analyzer time bins,

is indicated at three characteristic velocities. The structure previously reported by

Oates 1 at v = 127 m/s appears in the new data at 133 m/s, just within the velocity reso-

lution. Experiments were performed to check for possible equipment error. In par-

ticular, the multichannel scaler was allowed to accumulate 500, 000 background counts

with all equipment running. The channels in which the peak occurred were within 1/2

of standard deviation of the average. Thus, to the best of our knowledge, there

was no instrumental error.

To resolve the problem, additional data were taken at 1. 750K. We expected that

if a scattering resonance were present it would manifest itself more clearly in the lower

temperature data. Because resonances occur at specific values of angular momentum

and energy, it was expected that a resonance at lower T would be at a greater beam

velocity(A 1 = T to compensate for the lower scattering gas velocities. The data

at 1. 75°K are plotted in Fig. 1-6. There is no peak at 130 ± 9 m/s.

4. He 3 -He 3 Results

He 3 runs were performed at 1. 55 0 K so that the velocity distribution would be

the same as in the He 4 runs at 2. 1K. The total cross section was found to be
o2

87. 7 ± 9 A . The velocity-dependent cross section is shown in Fig. I-7. The ratio
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He4 - He
4

T= 1.75 OK

i" :-- I.

100 150 200

VELOCITY (m/s)

4 4
Fig. 1-6. He 4-He scattering: velocity-dependent cross section,

Qeff(v), vs beam velocity. Scattering gas temperature

is 1. 75 0 K.

of the He 3 -He 3 total cross section to the He 4 -He 4 total cross section (the average

of old and new data) is 0. 65 ± . 09. This cannot be directly compared with other

transport-phenomena data such as viscosity, because of the different weighting given

to velocity intervals in the calculation of their cross sections.

Each different theoretical interaction potential yields a different ratio of He 3 to

He 4 cross sections. We have calculated this ratio for a Lennard-Jones potential

with r = 2.56 A and E = 1.4 X 10 erg. This yielded 0.48 ± .07. (The large
m

error results from the graphical manner in which Qeff was calculated.) We did not

expect that this would fit the data as the velocity-dependent cross section calculated

with the L-J potential fails to fit the shape and absolute value of the He 4-He 4
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cross sections.1 Calculations are planned for other potentials.
3 4

The difference in cross section displayed by He and He , which provides direct

evidence of the different quantum statistics obeyed by the two isotopes, may provide

as sensitive a method for choosing the correct interaction potential as fitting the

velocity-dependent cross section.

This report was written while D. E. Oates was at Universitat Bonn. The data were

taken and reduced over a period of 3 months using apparatus that Oates had con-

structed and perfected in 3 years.

S. A. Cohen, D. E. Oates, J. G. King
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C. INVESTIGATION OF MOBILITY OF SUBMONOLAYER HELIUM

FILMS BY ATOMIC-BEAM TECHNIQUES

1. Introduction

Research on helium submonolayer films has followed classical methods: study of

adsorption isotherms,l adsorption isosteres, 2 and specific heat. 3 These methods yield

a direct measure of the various heats of adsorption, the monolayer density vs pressure,
and the temperature and coverage dependences of the specific heat and the entropy.

These quantities can be compared with numerical calculations based on models of the

state of the adsorbed atoms. The most realistic models are two-dimensional analogs

of three-dimensional systems, including van der Waals gas, ideal or condensed Bose

(or Fermi) gases, Einstein solid, or Debye solid with tunneling bonds. The quantity

most commonly used to show the distinction among the gas, liquid, and solid states -

the mobility of adatoms - has not, however, been directly observed.

In this report we describe an experiment using atomic-beam techniques by which

the mobility of helium adatoms on an argon substrate near 20 K can be measured. Pre-

liminary data, indicating no measurable mobility, are reported. We also report additional

information on characteristic desorption times and velocities derived from the data.

2. Theoretical Predictions

Mobility of adatoms on a periodic surface could be caused by thermal hopping or

quantum-mechanical tunneling between adjacent potential minima. An early calculation
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by Hill 4 predicted that thermal hopping should be negligible at temperatures below

El/10k, where E 1 is the depth of the well. The heat of adsorption is measured 2 to be
5

~70 0 K/atom at coverages less than a monolayer. That calculated by Ricca et al. and

by Novaco and Milford is close to 1000K/atom, but varies up to 2000K if the argon lat-

tice changes from a 100 to a 111 face. This poor agreement is not unexpected, since

the experimental helium lattice is probably neither 100 or 111. Nevertheless, Ricca

et al. give a reasonable estimate of E as 1000K. Therefore thermal hopping will prob-

ably not occur in the temperature region investigated in this experiment.

Calculations on quantum-mechanical tunneling by Ricca et al.,5 J. Dash,7

McCormick et al.,8 Novaco and Milford, 6 and H. W. Lai et al.9 predict tunneling for

helium adsorbed on various noble-gas substrates. It must be stressed that the lattice

parameters critically affect the tunneling time. Ricca reports rapid tunneling on the

111 face of argon, but none on the 100 face. Lai et al. report different calculations

with similar results. Dash and his co-workers, using a third calculation technique,

also show the importance of small changes in lattice dimensions. Typical tunneling
-10 -12

times predicted by these researchers vary from 10 to 10 s.

3. Experiment

The method used to measure the mobility of the helium atoms on a preadsorbed

argon substrate at 2. 0 0 K is as follows. First, approximately a monolayer of helium
2

is adsorbed on a large argon-coated surface. A small area of the surface, -1 mm2

is then rapidly heated to ~30 0 K. This desorbs the helium atoms, which are detected,

and their arrival times are recorded. That small area is then rapidly cooled back to

2°K. If the helium adatoms are mobile, some from adjacent areas will soon diffuse
2

over the 1-mm area. This area can be reheated at a later time and the number of

desorbed atoms can be compared with the original number.

The major components of the apparatus are a brass vacuum chamber containing

an A1203 wafer, a field-ionization detector and an electron multiplier. (See Fig. 1-8.)

The Al20 3 wafer is the heart of the experiment. Its construction is detailed in Fig. 1-9.

A pressed Al20 3 " superstrate," 1 X 1 X . 027 in. , with an average grain size of ~5000 A,

was obtained from the MRC Corporation. A strip of No. 302 stainless-steel foil,
-4

1 in. X l cm X 2. 50 X 10 cm, was epoxied across its center. The epoxy film,
-4

TRACON 2115, covered the stainless-steel foil with a thickness of (1. 5 1) X 10 - 4 cm,

as measured by optical interference techniques. Two strips, 1 mm wide, 2000 A thick,

one of Pb, the other of In, were evaporated over the epoxy, perpendicular to the

stainless-steel foil, near one end. Four-point electrical connections were made to

the evaporated strips; two connections were made to the No. 302 stainless-steel foil.

The contacts were made of pressed In. The back of the wafer was coated with a

light film of Apiezon N grease to achieve better thermal contact to an O. F. H. C. copper
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Fig. 1-8. Apparatus for studying mobility of submonolayer
helium films.
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EVAPORATED
INDIUM STRIP

- EVAPORATED
LEAD STRIP

PRESSED INDIUM
CONTACT

\ GOLD WIRE

(a)
EVAPORATED INDIUM

-2000 A

ACON 302 STAINLESS-STEEL F o

A1203 WAFER

(b)

Fig. 1-9. Details of the construction of Al 0 3 substrate.

(Not to scale.) (a) Top view. (b) Cross section.

block. The wafer was placed on the block, a 1-mm pinhole collimator was placed 5 mm

above the wafer and the field ionizer, and a tungsten needle with a tip of 1000 A diam-

eter was placed 2 cm above the pinhole, facing the first dynode of the electron multi-

plier. The brass can containing this assembly was sealed, evacuated to P= 1 X 10 - 7 Torr

and slowly cooled to 77°K. Enough argon was admitted to coat the macroscopic inner

area of the can and its contents with 5 monolayers of argon. Previous experiments 8

have shown that argon forms a complete monolayer at this temperature. Equilibration

was allowed for 10 hours at 77°K. The can was then cooled to 4. 2°K by liquid helium.

In our experiment, the copper block is directly connected to the helium bath by a

stainless-steel capillary, thereby ensuring thermal contact. The field ionizer is raised

to +10 kV. Any helium atom that comes within -1000 A of the tip is ionized and accel-

erated to the electron multiplier. Normal pulse-counting techniques with 0. 5 Ls resolu-

tion are used to record the pulses. Simple kinetic theory predicts a counting rate,C.R.,
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equal to 2 X 1012 P(Torr)//-T (OK), where K is approximately 2X1012 (K)1 /Torr sec.
-12

The pressure above a submonolayer film of helium is typically 10 Torr. Thus

the background counting rate at 2. OoK is -100 count/sec. A current pulse of

1-is width and 3-A magnitude, containing enough energy to heat a thermally

isolated foil from 2 0 K to 30 0 K can be supplied to the foil by an SCR. The tem-

perature of the foil can be known at two points - the superconducting transitions of

the In and Pb films, 3. 4oK and 7. 2 0 K, respectively. The IV characteristics of these

films can be monitored by a differential amplifier with a l-p.s response time. Thus the

experiment has the following steps: heating the stainless-steel foil; detecting the tem-

perature rise; detecting the desorbed atoms that pass through the pinhole and come

within 1000 A of the field-ionization tip; recording the time of arrival of the atoms (on

a storage oscilloscope); observing the cooling down of the foil; waiting for helium atoms

on the unheated portions of the Al 20 3 wafer to diffuse over the central portion; and

repeating the process.

It is important to note the characteristic times and numbers associated with the

experiment.

a. Time to recover the central portion by adatom mobility. If the tunneling time

is 10-12 s and the separation of adsorption sites is 3 A, then, by random walk, it takes

~1013 steps to move 1 mm. This implies a recovery time of -10 s.

b. Time to recover the central portion by vapor deposition. If the background pres-

sure is (at worst) 10 - 10 Torr, then the flux of atoms in the gas is 5 x 1011 atoms/cm 2 s.
14 2

Since the density of a completed monolayer of helium is 8 X 10 atoms/cm , it would

take 1. 6 X 103 s to recover the area.

c. Time to transfer sufficient energy to the helium atoms for desorption. The energy

transfer to the foil is limited by the RC of the circuit. The present arrangement has

RC = 0.5 p.s, with a sufficient L to cause critical damping. Transfer of energy through

the epoxy to the Al 2 0 3 superstrate and to the argon and helium monolayers should take
2c

place in a characteristic time t = pf 7, where p is the density of the epoxy, k its

thickness, c its specific heat near T = 20K, and K its thermal conductivity at T= 200K.

Using typical values for insulators, we arrive at t z 1 ps. Thus as energy is being

dumped into the foil it is probably being transferred to the Al203 wafer and the helium

monolayer.

d. Time for the helium atoms to desorb once the substrate is raised to 20K

(adsorption isotherms show that there is virtually no adsorbed helium at 20K). An

estimate of this time using Kapitza resistance of thick, 1000 A films in the limit of thin

films, gives ~10 - 7 s. A calculation by Ying and Bendow, 10 using a 3-d multiphonon
-8 I per h w a

theory, gives t = 2 X 10 8 s for Ne on Xe-covered graphite. (It appears that we can

measure this characteristic time if we eliminate the epoxy over the foil and use

shorter heat pulses.)

QPR No. 104



(I. MOLECULAR BEAMS)

e. Time for desorbed atoms to get to the detector. This is

s(2 cm) -4
t =10 s.V thermal 1

f. Number of atoms detected if a full monolayer is desorbed. This is n = n 0,
where 2 is the solid angle of the detector, and n0 is the number of atoms that get

through the pinhole. Under these circumstances, n 50. These last two characteristic

times and numbers yield a counting rate during the 0. 1 ms after heating of 5 X 105

counts/s, more than 1000 times the normal background.

g. Rise in background count rate from desorption of 1 mm X 1 in. area of a helium

monolayer. Simple kinetic theory yields 104 counts/s.

h. Decay time of the background count rate. This time depends on the probability

of adsorption. (Because the characteristic distance that helium atoms not going through

the pinhole must travel is ~20 cm, this background will arrive long after the initial burst

of atoms.) Monitoring the decay of this background will yield a good estimate of the

probability of sticking.

4. Results

A run was made with an Al20 3 substrate different from the one described above.

It lacked the temperature-measuring superconducting In and Pb films. It also lacked

an epoxy layer over the stainless-steel foil. The epoxy under the foil was approxi-
-3

mately 5 x 10 cm thick. This changed the theoretical cooling-off time to -1 ms. The

copper block was not well connected to the bath; its temperature never fell below 3. 1 K,
as measured by a resistance thermometer mounted on the block. Also, the detector

was 5 cm from the foil.

TRIGGER
PULSE 

100OOs/div

Fig. I-10. Oscilloscope trace of output from atom detection system
following first heat pulse. Pulsewidths are ~0. 5 ps. Dis-
tribution in pulse heights results from characteristics of
the electron multiplier.

Helium gas was admitted and the procedure outlined above was followed. After
admission of the helium, the count rate rose to 1. 3 X 104 counts/s. It fell slowly to
-1000 counts/s. A pulse of current sufficient to raise the foil to 35 0 K was sent through
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the foil. The signal, as recorded from the storage oscilloscope is shown in Fig. I-10.

Thirty-one atoms were detected in the 1 ms immediately following the heat pulse. The

foil was pulsed once each minute for the next 11 min. A total of 9 counts was accumu-

lated, in agreement with background. The foil was then pulse-heated at time intervals

of 8, 16, and 24 min.

The 8-min pulses showed approximately 4 counts per sweep. The 16-min and 24-

min pulses showed approximately 17 counts/sweep. ( A sweep is the 1 ms following

the heat pulse.) Increasing the heat pulse to raise the temperature to 50 0 K did not

increase the number of counts. Not enough data were taken for a detailed statistical

analysis of velocity distribution, or counts vs delay time. The major point is evident,

however. It took in excess of 103 s for a monolayer to reform. This is consistent with

vapor deposition, not mobility.

The major problem is the accurate determination of the temperature of the foil. We

hope that the use of the In and Pb films will solve that problem. If, contrary to calcula-

tion, the foil does not cool down in 1 ms, it could drastically affect the situation.

More experiments are planned in which In and Pb films and better information-

storage techniques will be used. Calculations and experiments are in progress that will

determine the time-dependent temperature profile across the epoxy Al20 3 wafer. Exper-

iments are planned to measure the desorption times and desorbed atom velocity distri-

bution. Different substrates are also under consideration.

We are indebted to Professor Margaret L. A. MacVicar, of the Department of

Physics, M. I. T., for suggesting the use of thin superconducting films as thermometers,

and to J. G. King for suggesting the problem.

S. A. Cohen
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D. EVAPORATION OF NEUTRAL ATOMS FROM He II STIMULATED

BY HEAT PULSES

1. Introduction

In a previous report,1 we described an apparatus built to study the evaporation of

neutral atoms from He II stimulated by heat pulses. This report discusses preliminary

results and gives some calculations that indicate a better experimental configuration

to study heat pulses in He II.

2. Apparatus

Several modifications to the apparatus described in a previous report1 will be dis-

cussed briefly. We were unable to fill the He 4 pot quickly, and a large heat leak resulted

from film flow in the fill capillary. We therefore installed a new fill capillary that is
not connected to the He 3 refrigerator system or to the He 4 pot (Fig. I-11). Gaseous

helium is condensed in the fill tube in the He 4 bath and allowed to drop directly into the

He 4 pot at bath temperature from the end of a 0. 020 in. ID capillary. We are able to
fill the 0. 05 cm 3 He II pot in less than 5 min by this method without overloading the

He 3 refrigerator.

When we first tried filling the He 4 pot, we found that the He 3 superheated and boiled
suddenly because of the low thermal conductivity of liquid He 3 . Therefore it was
necessary to redesign the He 3 pot in order to improve the heat transfer into the
He 3 and to prevent large thermal gradients in the liquid that decreased the effi-
ciency of the refrigerator. We now use a large-volume pot and maximize the He 3

copper surface ratio by filling this volume with copper wire and sintered copper
(Fig. 1-12).

3. Electronics

Pulses are supplied to the heater in the He 4 pot by the following method (Fig. 1-13).
A master trigger pulse starts the sweep of the multichannel analyzer used in the
scaling or counting mode. One hundred twenty-eight channels are used, each chan-
nel having a 62. 5 [is time span of which 25 is is dead time for memory cycling.
The master trigger pulse also triggers a delay generator which in turn provides
the trigger for the General Radio 1217-C pulser. The output of the pulser, vari-
able in pulse height and width, is applied to the heater in the He 4 . The voltage
and current pulses to the heater, monitored by the oscilloscope, measure the total
energy supplied to the heater during the pulse.

Atoms that have evaporated from the He 4 surface pass through a small aper-
ture and are field-ionized at the tip of the sharp tungsten needle (Fig. I-11). The
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SOURCE CHAMBER ZEOLITE PUMP

(a) STAINLESS STEEL CHAMBER

(b) LEAD O-RING SEAL

(c) He 3 PUMP LINE

(d) He 3 -He 4 POT STRUCTURE

(e) He 4  FILL LINE

(f) FIELD IONIZING NEEDLE

(g) ELECTRON MULTIPLIER

(h) COPPER SEPTUM

(i) ZEOLITE

(j) COPPER RODS AT BATH TEMPERATURE

(k) SOURCE CHAMBER ISOLATION LINE

(I) PINHOLE

Fig. I- 11. Modified apparatus for studying the evaporation of helium atoms
from He II stimulated by heat pulses.
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Fig. 1-12. He 3 - He 4 pot structure.

He3 POT

SINTERED COPPER

COPPER WIRE HEAT CONDUCTORS

He3 PUMP LINE

He4 POT

EPOXY BOTTOM

HEATER LEAD

AQUADAG HEATER

Fig. 1-13. Experimental arrangement.
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ions are collected on the front dynode of a 16-stage Allen-type electron multiplier,

and the resultant pulses are amplified and then counted by the multichannel analyzer.

4. Preliminary Results

After a 16-hour cool-down period at 1. 20 K, the background counting rate in the
-12

detection chamber is 1-2 counts/s, corresponding to pressures in the range 10 -

-13
10 Torr. A known volume of helium gas is admitted to the fill tube and after con-

densing in the bath at 1. 20 K drops into the He 4 pot. The counting rate during filling

rises to 6. 5 x 105 counts/s and remains steady during 5-min fill time. After filling,

the count rate falls off very rapidly and the temperature of the He 4 drops from 0. 5 0K

(maintained during the fill) to 0. 30 K.

Heat pulses, of 50-p~s width, ranging from 0. 01 to 40 erg per pulse are then
4

put into the He The counts due to the resultant evaporating atoms are stored in the

OCT. R,0071

TEMP = 0.400 FEGRFES KELVIN

CUPRRNT = 0.520 MA.

COUNTING TIMF 3.000 MIN

PUN NO 3

PULSE WIDTH = 50 MICROSEC

ENERGY = 4.150 ERGS

RUN TIMF 19 MIN

VOLTAGE = 16.000

PULSE RATE 10 HZ

FILL HEIGHT 0.000 CM

XX?
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x xxx

0 2
xxx x

5 xx7xxxO
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t(ms)

Fig. I-14. Multichannel analyzer output, showing distribution time of arrival
of evaporating atoms.
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multichannel analyzer, the output of which gives the arrival time distribution of the

evaporating atoms at the needle. A typical multichannel output is shown in Fig. 1-14.

From the multichannel output we are able to determine the number of counts/heat

pulse by computing the area under the curve shown in Fig. 1-13 and subtracting a back-

ground counting rate determined from channels 3-16 on the output. This number is

plotted as a function of energy per heat pulse in Fig. 1-15. From this figure we see

o1000

XX
x X

X x
X

X X

X

X X

XX X

1

ENERGY/PULSE (ERGS)

Counts/pulse as a function of heat input/pulse.

that above z0. 5 erg/pulse, the number of evaporating atoms/heat pulse remains approx-

imately constant as we increase the energy/pulse. Under the assumption of a constant

phonon-evaporating atom conversion ratio at the surface of the liquid He 4 , this flattening

of the curve could be due to a combination of Kapitza resistance at the carbon film-

liquid helium interface and the creation of a gas film at the interface that then limits

the heat flow across the boundary. We can get a rough measure of the surface temper-

ature of the carbon film from a measurement of the resistance vs temperature curve

for the heater. This measurement indicates that the surface of the heater warms up
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considerably during the heat pulses, and for the higher energy pulses reaches 300*K.

If we plot the channel number of the first discernible rise of the heat pulse in

the multichannel output vs energy of the heat pulse, we find that the arrival times

for the beginning of the pulse decrease with increasing pulse energy (Fig. 1-16).

21
Fig. 1-16. Start of pulse at the detector as a func-

tion of heat input/pulse.

In order to explain this effect, we must explore the processes by which a heat

pulse is transformed into evaporating atoms. The heat pulse raises the surface tem-

perature of the heater, which then can be thought of as a blackbody phonon radiator,

characterized by an effective temperature TH. The phonons radiated by the heater must

be coupled into the liquid He II by a complex process that includes a thermal bound-

ary resistance known as the Kapitza resistance. The phonons, coupled into the He II,

have an unknown frequency distribution, but must all travel at the speed of sound

(240 m/s), and make few collisions with each other or with the thermal phonons pres-

ent at these temperatures, since the phonon mean-free path is long compared with the

dimensions of the container. Those phonons in the solid angle that intercept the sur-

face travel directly to the surface and arrive after a time 2/c, where I is heater-to-

surface distance. For a 1-cm distance this delay time is ~40 ps. Other phonons that

are present scatter from the walls, diffusely and specularly, and arrive at the surface

at times greater than 2/c. Those phonons that scatter from the walls and arrive at

the surface only after many collisions with the walls form a diffusivelike flow of heat,

the equation of which has been solved.2

At the interface, phonons are converted into evaporating atoms by a process that

is still not understood. If we assume that the evaporating atoms can be characterized

by a Maxwellian-Boltzmann velocity distribution in the vapor,3 the shape of the pulse

of atoms arriving at the needle is given by the convolution integral over all arrival times

of the heat pulse at the surface with the Maxwellian-Boltzmann distribution. This pulse

shape might be modified considerably by the phonon-evaporating atom process.

Assuming, however, that the surface conversion process does not change the pulse

shape, then by looking at the start of the heat-pulse curve at the detector, we can make
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Fig. 1-17.

Calculated arrival times for 5 0-ps square
pulse as a function of gas temperature.

LI

Fig. I-18.

Scanning molecular microscope mode
magnification M = L2/L1. Diameter of
resolution r = d(1+L1/L2).
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Fig. 1-19.

He 4 pot for collimated phonon beam.

QPR No. 104

I

IMAGE PUNE

L2



(I. MOLECULAR BEAMS)

some estimates of the effective temperature of the evaporating atoms.

A program has been written that convolves a square pulse with the Maxwellian-

Boltzmann distribution at various gas temperatures, and plots the intensity at the

detector as a function of the time of arrival. In Fig. 1-17 we plot the start of

the convolved pulse and the peak as a function of temperature for a 50-[s pulse

starting in channel 16. We see that above 2 0 K the arrival times do not change very

much with temperature but are all grouped in channel 18. Below this temperature

the arrival times are increasingly delayed as the temperature is decreased. Com-

paring this model with experiment in Fig. 1-16, we see that the temperature of the

evaporated atoms varies considerably as the energy/pulse changes.

Two assumptions contained in this model are open to question. First is the assump-

tion that the frequency response of the surface is good, in that a square pulse of phonons

incident on the surface gives a square pulse of evaporating atoms. The second assump-

tion is that the start of the experimental curve is attributable to atoms that were evap-

orated while the square pulse of phonons arrived at the surface. In the actual

experiment, the pulse of phonons arriving at the surface is only square at the start of

the pulse and then changes shape, because of the diffusive arrival of phonons from the

heat pulse.

If we could separate those phonons arriving at the surface without collisions with

the walls of the container from those that make up the diffusive pulse (i. e., make a col-

limated phonon beam), we might be able to get a clearer picture of the processes

involved in the conversion of phonons into evaporating atoms.

If the evaporation arising from the collimated phonon beam is restricted to the area

of the phonon-beam profile, then by using the needle as a molecular microscope 4

(Fig. I-18)we should be able to see this localized evaporation. For this purpose we have

designed and built a new He 4 pot (Fig. 1-19). With this pot we shall have a collimated

phonon beam of 0. 0225 in. diameter and edge spread that varies depending on the amount

of collimation and surface-heater depth. Tests are now being carried out with this new

configuration.

W. B. Davis
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E. DETECTION OF A QUANTIZED VORTEX LINE AT

A KNOWN LOCATION

One of the fundamental problems in superfluid helium research concerns the exis-

tence and properties of quantized vortex lines. Several experiments have already
1-3

provided impressive evidence for their existence under certain conditions. No

experiment, however, has succeeded in detecting the appearance of a vortex at a known

location. We report here a summary of progress with an experiment designed to detect

the appearance of a vortex line at a well-defined pinning site.

BRASS

BRASS

2R -

Fig. 1-20. Schematic diagram of the apparatus.

A schematic version of the apparatus is shown in Fig. 1-20. A pair of needles

(E = emitter, C = collector) of shank radii a l are positioned on axis within a cylindrical

cavity of radius R, so that the currents IE and I C can be monitored. The tip of E is

etched to a sharp point (radius of curvature -103 A) so that suitable field emission of

electrons occurs for VE of 200-400 volts. The cylindrical cavity is filled with liquid

helium, and can be rotated at angular velocity 0 with respect to the axis.

In essence the experiment studies the collected current, I C , as a function of S0 for

a constant emitted current, I E . For each run the apparatus is first cooled slowly to below

TX' I E and I C are measured, and then the apparatus is gently accelerated. At a critical

angular velocity, 2C1 it is energetically favorable for a macroscopic quantum transition
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to occur from no quantized vortex line (n= 0) to a single quantized vortex line (n= 1)

pinned between E and C. The electrical conducting properties of the system should be

detectably different for the n = 0 and n = 1 states, and should allow detection of the tran-

sition if we monitor IC as 0 is varied. Furthermore, after some value of 0 max is

reached the system is slowly decelerated and returned to rest, after which IE and IC
are again measured. In addition to seeking a transition during acceleration, comparison

of (IC/IE) before and after rotation should also reveal the presence of a vortex line at

the pinning site.

The theoretical value of Q C1 is obtained by considering the rotational free energy,

F, of the system. If the needles C and E were absent, the transition would be expected
o

to occur at 2 = QC1, given by the well-known expression

o - k n (( ; k-= i, (1)
C1 2rR 2  a m

where h is Planck's constant, m is the mass of a helium atom, and a is the vortex
o

core radius. In our case we obtain

Cl \ L n( (2)C1 C 2 R aL

for the angular velocity at which free-energy considerations favor a state with n = 1

quantized circulation around the needles and which blends smoothly into a vortex line
o- -1

of n = 1 between the needle tips. Numerically, C1 = 1.8 X 101 rad-sec , whereas
-10 0.8X 10

C1
It may also be possible to create vortex-line states with n > 1 in our type of appa-

ratus, in particular n = 2. This possibility arises because the usually prohibitive higher

free energy of a length of an n = 2 vortex line can be compensated by a long section of

n = 2 quantized circulation about the relatively thick needle shanks where the free

energy is relatively low. A vortex line with n > 1 has never been observed and would

be of considerable interest.

Electrons emitted by E exist in liquid helium as bubbles with a radius of ~15 A, a

phenomenon that is due primarily to the balancing of the quantum-mechanical zero-point

pressure of the electron against the ambient pressure of the liquid helium. The bubble

model provides an explanation for the electron's mobility in liquid helium and also

explains the trapping of electrons on a vortex line. 4 In the absence of a vortex line

between E and C, electrons emitted from E which are mobility-dominated follow the

electric field lines within the apparatus. If C is well shielded so that essentially no field

lines originate from C, then I = 0 in the absence of a vortex. If C is unshielded, how-

ever, some field lines originate at C and the ratio (IC/IE) is small, but not zero in the

QPR No. 104



(I. MOLECULAR BEAMS)

absence of a vortex. A computer calculation of the field lines yields the estimate

(IC/IE) = 10 - in the absence of a vortex, a value that is in rough agreement with pre-

liminary data.

On the other hand, if a vortex line is present between E and C, and C is well

shielded, then some electrons are trapped on the vortex and are channeled to C. Under

reasonable operating conditions, the channeled electron current should be of the order

of IC 5 X 1016 A. If C is unshielded, however, and a vortex is present, then I C
should be less than that obtained without a vortex. The decrease in I C in the unshielded

case arises from two possible effects: (i) a deflection of otherwise collected electrons

away from C, because of trapped charge on the vortex line, and (ii) a decrease in

effective conductivity between E and C, because of the partial masking of E by the

vortex. The second effect results from the higher electron mobility in bulk liquid

helium ([ B ) compared with the mobility along a vortex (iV). It appears that when the

needle is unshielded the effect is larger, and this case is now being studied. Thus far,

no reliable transitions have been observed during rotation, but for runs in which the

maximum angular velocity exceeded 2 C1 the following transitions were often observed.

(IC/IE) 10 -2 (before rotation)

(IC/IE) 10 - 4 (after rotation).

Subsequent warming to above TX restores the "before rotation" value, and strongly sug-

gests that the transition to a vortex line pinned between E and C has occurred.

We are grateful for stimulating conversations with J. G. King and are indebted to

M. G. R. Thomson for help with the computer calculations.

S. R. Jost, J. C. Weaver
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F. SCANNING WATER MOLECULAR MICROSCOPE

During the past several years a molecular microscope has been developed for making

visible pictures of the spatial variation in the emission from a sample1, 2 of neutral
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volatile molecules (such as water). A sketch of the current version is shown in

Fig. 1-21. It incorporates a scanning pinhole rather than a scanning detector.

., GLASS TOP PLATE

MAIN
PUMPS ELECTRON

MULTIPLIER
DETECTOR "-

PINHOLE
HV COLD

TRAP
SURFACE 2

VALVE FOR VACUUM LOCK

TO PUMPS FOR
VACUUM LOCK

-TO ROUGH PUMP

REMOVABLE SAMPLE STALK

S---0

- SCAN DEFLECTOR
(TWO DIMENSIONS)

Fig. I-21. Schematic diagram of the apparatus.

A conventional pinhole microscope is shown in Fig. I-22a, and Fig. I-22b shows

the location of the field ionization detector and electron multiplier in the present

+HV -HV (

- IMAGE PLANE N_ - - -

L2

FOIL CONTAINING
PINHOLE OF

DIAMETER d

LSAMPLE
SAMPLE PLANE

(a)

Fig. I-22. (a) Idealized version.
(b) Present device.

device. Ordinarily the pinhole (diameter, d)is stationary and emissions from the sample

are imaged at the image plane with magnification, M, given by
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M = L 2 /L 1  (1)

and a geometrically limited resolution, r, given by

r= d 1 + L . (2)
L-2

For the pinhole we are now using (d= 1. 2X 10 2 cm), the diffraction of water molecules

because of their de Broglie wavelength (10-8 cm) is negligible.

If neutral molecules are converted directly into a visible image over the entire image

plane by chemical and physical means (for example, by providing a cold metal surface

at the image plane, capturing a latent image of molecules there, and subsequently

developing the latent image into a visible image - which has not yet been satisfactorily

accomplished), then Eqs. 1 and 2 for the magnification and resolution are applicable.

These equations also apply if a small-area detector (such as a field ionization detector;

Adet -11 cm 2 ) can be scanned successfully in the image plane to pointwise-sampledet 1
the flux of neutral molecules into the image plane.

Experience, however, shows that this method does not work satisfactorily with a

field-ionization detector. Instead, spurious but reproducible pictures are obtained that

are independent of a water-emitting sample. Because the operation of the field-

ionization detector is not completely understood, the reason for the failure of this

method is not completely understood. It is clear, however, that electric field lines

must change within the apparatus when the field-ionization detector is scanned, since

there are high potentials on the detector (+5-+10 kV) and on the multiplier (-3 kV) with

respect to the irregularly shaped (but grounded) walls of the apparatus. Because of the

high potentials of the detector and multiplier with respect to the grounded walls of the

apparatus, scanning the field-ionization detector results in changing electric field lines.

As a result, the collection efficiency of the multiplier, the ionization of background gas
-7

at 10 Torr, and so forth, can all vary during scanning.

To overcome this problem, we placed a grounded scanning foil with pinhole
-2

(d 1. 3X 10-2 cm) behind a large grounded mask that contained a relatively large
-1

(d= 3X 10-1 cm) hole. The entire scan occurs within the large hole. The combination

of scanning foil and mask allows scanning without appreciably changing electric field

IMAGE PLANE

L2

SCANNING FOIL WITH PINHOLE DIAMETER - d

L SAMPLE X

Figr Sketch for calculating magnification.

Fig. 1-23. Sketch for calculating magnification.
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lines, and successful operation is achieved. While the resolution is still given by (1)

for a scanning pinhole, inspection of Fig. I-23 shows that the magnification, M, is now

X X X L +L '
X__ scan dds L2

scan Xsample Xscan \ scan) 1 2

where Xdis is the peak-to-peak length of the scan as displayed on the final photograph,

X is the peak-to-peak distance traversed by the pinhole during the scan, and

Xsample is the actual peak-to-peak length exposed to the detector during the scan. For

the present scanning molecular microscpoe

-2
d= 1.3 X 10 cm

-1
L = 5X 10 cm
1

L = 1 cm,

2 - 2  -1

so that r = X 102 cm and M = (6. 7X 10 )(Xdis/Xsca). As shown in three typical

pictures (Figs. I-26 through 1-28), this scanning molecular microscope has a useful

resolution and magnification, and has the potential to provide information unobtainable

by either optical or electron (ion) microscopy. -2
For Figs. I-26 through I-28 the resolution is always 2 X 10 cm, while the magnifi-

cation varies as indicated. Figure I-26 shows water evaporating from 4 to 24 holes in

a plexiglas sheet, with diam 2 X 10-2 cm and length 1. 5 X 10-1 cm. As shown in

Fig. I-24, a plexiglas sheet overlays a buffer material that has a moderate permeability,

HOLES WITH DIAMETER 2x 10
2

cm
VACUUM

CLAMP
BUFFER O-RING

Fig. 1-24. Test pattern for sample configuration.

with liquid water available on the underside of the buffer. This sample was intended

primarily as a known test pattern, and has no other significance.
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NuLLvrutL FROG SKIN

SALINESOLUTION

Fig. I-Z5. Sample holder containing frog skin.

Fig. I-26. Test pattern. Fig. I-27. Frog skin. Fig. I-28. Tooth sample.

The picture in Fig. I-27 was obtained from the sample shown schematically in

Fig. I-25. As shown, the sample is a frog skin (Rana pipiens) with an overlay on a

single sheet of 1-. pore size, 10-p. thick, nucleopore filter paper which provides a

porous supporting sheet with a high density of pores well below our resolution. Over

this is a plexiglas sheet with a 1. 5 X 10- 1 cm hole. The underside of the frog skin is

bathed in an appropriate saline solution. As might be expected, water crossing the frog

skin within the hole can evaporate directly into the vacuum, while water crossing in

regions masked by the opaque (to water) plexiglas can migrate laterally until it reaches

the edge of the hole, where it evaporates. Thus a ring of evaporating water should be

observed (although the ring need not be uniform in its evaporation if the regions of

frog skin which supply it have varying properties). The picture shows a portion of this

nonuniform ring plus a region of higher water flux inside the ring. This region of

higher water flux reveals a feature of the frog skin which is not apparent optically and,

although we do not yet know the cause of this feature (perhaps it is a region of tissue

damage), the ability to detect an otherwise invisible region with higher water permeabil-

ity is significant.

Figure I-28 shows varying water emission from the edges of an irregular sample

of a tooth mounted in a piece of plexiglas. 3 Water is present on the nonvacuum side.

Dental researchers are keenly interested in the porosity of teeth and tooth samples to
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water, but this porosity, which can evidently vary spatially within an individual tooth,

cannot be satisfactorily measured by existing techniques. Some of the nonuniform water

emission shown in Fig. I-28 is apparently the result of water following the paths of

least resistance through portions of the tooth sample where it is nonuniformly sealed

into the plexiglas piece. This information cannot be provided by optical or electron

microscopy. In this case the magnification is approximately 10X.

J. C. Weaver, J. G. King
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G. DESORPTION HEAT PULSE PROPAGATION

It is probable that an important version of the molecular microscope will use a

scanning electron beam to desorb previously applied neutral molecular stains (NMS). 1

In such a device it is envisioned that a

biological specimen (such as a cell mem-
VACUUM d/2 brane surface) will be initially stained by

exposure to a flux of an appropriate
h - CENTRAL DISKCENTRAL DISK neutral molecule such as water. In this

/2 | example, water should specifically bind
S BIOLOGICAL

MATERIAL to hydrophilic regions of the surface, and

subsequent desorption of water molecules
TEMPERATURE RESERVOIR by the focused beam of electrons can map

Fig. I-29. out the location of the hydrophilic sites.

Physical geometry for calculation of heat As a preliminary study we examine the

propagation. heat propagation from an electron beam

pulse that delivers heat to a thin disk in

a substrate with thermal conductivity K, density p, specific heat C (representing the

thermal properties of a biological specimen).

We first examine the approximate time constants for loss of heat from the substrate,

because of conduction and radiation, and find that conduction dominates. The physical

geometry is shown in Fig. I-29. If T is the temperature, then the radiation time con-

stant T R for the disk, given an initial heat input Q, is approximately
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Q Chp
TR  . (1)

QR EU (T+T ) (T2+To)

We expect T >> T , so that TR (Chp)/(uT3). Similarly, the conduction time constant

is

Q Cr h p

QK K(r +2h)

since h ro = d/2. Thus TK (Ch p)/3K, and the relative values become y =

3K -5 -1 -2 -1 -6 K
3 If T - 250'K, E ~ 1, = 6 X 10 erg-sec -cm -K ; h= 1 10 cm, and

EoT3h
3 -1 -2 -1the conductivity for polyethylene at 80 0 K is K = 2 X 10 erg-sec -cm -oK , then

y = 6 x 106, so that the heat loss by conduction is vastly greater than that by radiation.

To study the propagation of heat delivered instantaneously into a thin disk (diam-

eter d, thickness h), we take the ideal case of an infinite slab in the x-y plane of finite

thickness f/2 in the z direction. The z = 0 surface is held at a constant temperature

(for convenience, we pick T = 0; we can subsequently add a constant temperature to

the solution). Since we have shown that the radiative heat loss is negligible, we con-

sider the more easily solved symmetric case given below, with twice the heat input,

since by symmetry no heat will flow across the z = 1/2 plane.

z

BIOLOGICAL MATERIAL

d R

z =1/2--- 2h p

INSTANTANEOUS CYLINDRICAL
VOLUME OVER WHICH HEAT IS

z =0 APPLIED

T~O

Fig. 1-30. Modified mathematical geometry for calculation of
heat propagation.

We thus consider the geometry shown in Fig. 1-30. The temperature per unit volume

at point P(x, y, k/2, t), because of an instantaneous point source P' at (x', y', z', t') in
this configuration is a Green's function, TG , given by
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Q exp[-R/4K(t-t')] exp[-bn(t-t'
TG(R t-t') PC- pC (t-t')

n= 1
where

nTr z' nTr
sin sin* e flT . fT

K = diffusivity = K/pc

R (x-x') + (y-y') = r + r' - 2rr' cos 8'

b nt a2 K) h.

The coordinates are clarified in Fig. I-31. To find the physical temperature, within

d

Fig. 1-31. Coordinates for calculation of heat propagation.

the z = k/Z plane, T(r, t-t'), from an instantaneous source at t', we need to integrate TG
over the volume of the source. Thus

T = 1 t
:C K ] (t-t')

S(/2 )-h

de' yd/2" 0
exp[-(r 2 +r' 2 -Zrr' cos 0')/4K(t-t')] r' dr'

o

n nT z'
dz' exp[-bn(t-t')] nsin - sin

n= 1

We integrate first with respect to z' and obtain

(f/2)+h

(f/2)-h

nTr' Zs n (nh)dz' sin sin sin.C hrr 2

Then the sum over n becomes
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Fig. 1-32. Temperature rise (arbitrary units) as a function of
time for various values of r. Heating pulses on

-6
for the first 10 s.

Table I- 1. Ratio of peak temperature rise at z = 1/2 as a function

of r when r = 5 X 102 A is taken for a reference. The
approximate time of occurrence of T peak(r) after appli-

cation of the instantaneous source of heat is also given.

Tpeak(r)

r to peak
(angstroms) Tpeak (500 (seconds)

5 X 102 1. 0 4 X 10 - 8

1 X 103 1. 3 X 10 2 X 10 - 7

2X 10 3  1. 5 X 10 - 2  6 10 - 7

5 X 103 9. 2 x 10 - 4  6 10 - 6

1 X 104 1.3 X 10 - 4 2 X 10 - 5
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Zn.2 n(-r si (nwh) 2 exp[-b n(t-t)]. nh
Sexp[-b(t-t sin (6)

n n Z f T n i6
n=1 n= 1

n odd

We now integrate with respect to 0', using the relation3

e- cs os v x dx = VJ (), (7)
0

with v = 0. By using the series representation4

00 ( x) -

J (x) = (8)

j=0 ! r(j+v+l)

the integration over the spot radius, r', can be performed, since 5

C ax ax
xj e a x dx = e m+ ' a= -1. (9)

m=0 (j-m)! a

Our final expression for the temperature rise for an instantaneous disk source is thus

T(r, p) 16Q - expp d2) (pr2 j m=J (pd2/4)J-m
T(r, p) =I - exp p + 4

j= 0 m=0

exp - bn
Kp sinT (10)

n= 1
n odd

where p = [4K(t-t')] - ' Equation 10 has been evaluated numerically as T(t) by setting
= cm, h 1-6

t' = 0, = 103 cm, h = 10 cm, d = 10 cm for several values of r. These results

are plotted in Fig. 1-32. As expected, the peak temperature rise falls off rapidly with

increasing r, a necessary feature if the scanning desorption molecular microscope is

to be feasible. Table I-1 shows the relative peak temperature rise and the approximate

time at which it occurs.

This investigation continues and will include the effect of finite heat pulsewidth. Our

final aim is to estimate the number of water molecules desorbed per area as a function

of r for various conditions. We acknowledge helpful conversations with J. G. King and

G. R. Herzlinger and wish to thank M. G. R. Thomson for carrying out all the numerical

calculations.
D. G. Payan, J. C. Weaver
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H. NEW METHOD FOR STUDYING WATER TRANSPORT IN

BIOLOGICAL MEMBRANES

The transport of molecules and ions across biological membranes has received

considerable attention for several decades but understanding of the fundamental mech-
anisms of transport, for the most part, is still lacking.1 One class of problems of

particular interest concerns the change in permeability to water membranes following
the application of certain drugs. A specific example is the increase in water permeabil-
ity of frog skin following the application of ADH (antidiuretic hormone). This effect is
usually measured by mounting a freshly obtained sample of frog skin (area =7 cm ) in
a plastic chamber so that both sides of the skin can be bathed with an appropriate

oxygenated saline solution (Ringer's solution). The conventional method for measuring
the water flux in such an apparatus involves a volumetric technique in which the change
in volume of water on one side of the frog skin is measured at regular time intervals
(~10 min). This method yields a time-integrated value of the water flux over 10 min,
so that the temporal resolution is poor. The conventional method is also somewhat
insensitive, with a minimum detectable flux of the order of 0. 2 4f/min-cm , or

107 molecules/sec-cm.

We report here our progress in the development of a new technique for studying
water transport in samples of surviving frog skin. This technique, which is essentially
a special case of molecular microscopy without spatial resolution, offers the possibility
of increasing the sensitivity by several orders of magnitude, as well as considerably
improving the time response. Our technique involves placing the frog skin in an

environment where it is fully bathed with circulating aerated Ringer's solution on one
side while the other side is a vacuum (with an intermediary of buffering nucleopore filter
paper). This arrangement is shown in Fig. 1-33. On the vacuum side a field ionization
detector and electron multiplier monitor the flux of water into the vacuum by counting
individual water molecules. In the present apparatus it is feasible to expect detection
of a water flux of 1013 molecules/sec-cm2. If an electron bombardment universal
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2, 3
ionizer2, 3 and mass spectrometer are employed instead, we can hope to monitor a

flux at the 5 X 1010 molecules/sec-cm2 level. In both cases the intrinsic time response

of the apparatus is determined by the sample-detector separation and thermal velocities,
-4

and is of the order of 10 s.

CLAMP NUCLEOPORE

VACUUM UFFER

FSi - FROG SKIN

0-RING Fig. 1-33.

Sample of configuration.

RINGER'S RETURN

RINGER'S SUPPLY

(p= latin) 
Fig. 1-34.

Equivalent circuit for water movement. P is analogous

"F (PFN=20+Torr) to voltage; A (molecules-sec ) is analogous to current.

CN RN RF is the passive resistance of frog skin to water, RN is

ns the resistance of nucleopore filter paper, and CN is the
capacitance associated with the porous nucleopore.

(VACUUM)

Clearly, a formidable problem is the maintenance of a viable frog-skin sample,

since the sample may undergo stress from an atmospheric pressure differential, as

well as the dehydrating effects of vacuum on one side. Experiments on the frog-skin

sample with both sides bathed in Ringer's solution while a 1-atm pressure differential

was maintained showed no damaging effects, however. As in all of our determinations,

the open-circuit potential developed by the frog skin is used as the indicator of viability.

Similar experiments with both sides at 1 atm but with one side dried by a gentle stream

of air indicated that dehydration would easily kill the sample. Thus the following

approach was tried, as shown schematically in Fig. 1-34. The purpose of our approach

is to provide sufficient resistance to water flow between the frog-skin sample and the

vacuum so as to achieve a partial pressure of water at the frog skin-nucleopore inter-

face, PFN' equal to or somewhat greater than 20 Torr, the vapor pressure of water at

room temperature. In this way the otherwise severe dehydration effects can be avoided

while still allowing a direct and sensitive measure of the water flux by our detector,

since one or more monoplayers of water should be able to exist on the side of the frog

skin toward vacuum. We have performed some tests in a small test system using this

approach, and find that in many, but not all, instances the frog skin survives exposure
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to vacuum for 1 hour. This is an encouraging but preliminary result, and our tests

will continue.

One disadvantage of our approach is some sacrifice in temporal resolution over the
-4

intrinsic resolution (-10-4 s) of the apparatus. The cause is as follows: In addition to

the resistance of the nucleopore, R N , there is also a non-negligible capacitance, CN'
because of the usual capacitance of a void volume for a gas (CNV= n/p), and also because

of an adsorption isotherm for water and the nucleopore (CNA = 8n/8p). Thus C N = CNV +

CNA and gives rise to a calculated time constant of the order of 1 s or less. Measured

time constants are in rough agreement at 1-3 s. Nevertheless, the temporal resolution

is much better than that obtained in the traditional volumetric method.

Since our technique is still somewhat unreliable, only a few runs have been made

in the main apparatus in which the water flux can be measured. With normal dosages

of ADH, no noticeable flux change has been observed. In a single run for which the

ADH dose was excessively large, however, the response sketched in Fig. 1-35 was seen.

TIME AXIS NOT TO SCALE

is - ~29min a

~13 min

APPLY ADH -1 -1.2min

s TIME

Fig. 1-35. Water flux as a function of time following a massive dose of ADH.

This behavior is quite usual. It should be emphasized that the spikes would not have

been seen in conventional measurements. Because this behavior has been observed

only once, we attribute no fundamental significance to it except as a demonstration of

the type of signal that can easily be observed by our technique.

Finally, although it might at first glance appear far-fetched, we wish to point out

that this in vitro technique can probably be extended to in vivo applications, at least in

the case of frog skin, by placing a live frog up to a vacuum port (again using a suitable

buffer). Naturally the entire technique described here can be readily extended to study

transport of gases such as 02 and CO 2 . During the recent development of this technique

we have had considerable help from many members of our group, especially J. Jarrell,

and also from Dr. A. Essig of the New England Medical Center.

J. C. Weaver, J. Abrams, J. G. King

[J. Abrams is a visiting student from the Department of Biochemistry, Harvard
University.]
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