96 research outputs found

    A Strong Case for Viral Genetic Factors in HIV Virulence

    Get PDF
    HIV infections show great variation in the rate of progression to disease, and the role of viral genetic factors in this variation had remained poorly characterized until recently. Now a series of four studies [1–4] published within a year has filled this important gap and has demonstrated a robust effect of the viral genotype on HIV virulence

    Lack of Evidence for Changing Virulence of HIV-1 in North America

    Get PDF
    Background: Several long-term cohort studies and in-vitro fitness assays have resulted in inconsistent reports on changes in HIV-1 virulence, including reports of decreasing, stable, and increasing virulence over the course of the AIDS pandemic. We tested the hypothesis of changing HIV-1 virulence by examining trends in prognostic clinical markers of disease progression from 1984 to 2005 among nearly 400 antiretroviral-naı¨ve participants in the United States Multicenter AIDS Cohort Study (MACS), a longitudinal study of HIV infection in men who have sex with men (MSM). \ud \ud Methodology/Principal Findings:\ud Because clinical AIDS endpoints could not be used (due to antiretroviral therapies and prophylaxis), three prognostic markers of disease progression were used as proxies for HIV-1 virulence: plasma viral RNA load and CD4+ T cell count at ‘‘set point’’ (between ~9 and ~15 months after seroconversion), and rate of CD4 cell decline within three years after seroconversion. We performed multivariate analyses of the association between these markers and seroconversion year, with covariates including MACS site, race/ethnic group, seroconversion age, and CCR5D32 status. No statistically significant association was found between year of seroconversion and ‘‘set point’’ plasma viral load (at ~9 months after seroconversion: slope =20.004 log10\ud copies/mL/year, p = 0.76; at ~15 months: slope =20.005 log10 copies/mL/year, p = 0.71), CD4 cell count after seroconversion (at ~9 months: slope =20.112 cells/mL/year, p = 0.22; at ~15 months: slope =20.047 cells/mL/year, p = 0.64), or rate of CD4 cell decline over the first three years after seroconversion (slope =20.010 cells/ul/yr2, p = 0.88). \ud \ud Conclusions/Significance: The lack of significant trends from 1984 to 2005 in these prognostic markers of HIV disease progression suggests no major change in HIV-1 virulence over the AIDS pandemic in MSM in the US

    Phylogenetic Studies of Transmission Dynamics in Generalized HIV Epidemics: An Essential Tool Where the Burden is Greatest?

    Get PDF
    Efficient and effective HIV prevention measures for generalized epidemics in sub-Saharan Africa have not yet been validated at the population-level. Design and impact evaluation of such measures requires fine-scale understanding of local HIV transmission dynamics. The novel tools of HIV phylogenetics and molecular epidemiology may elucidate these transmission dynamics. Such methods have been incorporated into studies of concentrated HIV epidemics to identify proximate and determinant traits associated with ongoing transmission. However, applying similar phylogenetic analyses to generalized epidemics, including the design and evaluation of prevention trials, presents additional challenges. Here we review the scope of these methods and present examples of their use in concentrated epidemics in the context of prevention. Next, we describe the current uses for phylogenetics in generalized epidemics, and discuss their promise for elucidating transmission patterns and informing prevention trials. Finally, we review logistic and technical challenges inherent to large-scale molecular epidemiological studies of generalized epidemics, and suggest potential solutions

    Association Study of Common Genetic Variants and HIV- 1 Acquisition in 6,300 Infected Cases and 7,200 Controls

    Get PDF
    Multiple genome-wide association studies (GWAS) have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP) data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1). After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels) for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6×10−11). However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception ofCCR5Δ32 homozygosity). Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size

    Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    Get PDF
    Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings: Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10-5). While the association was not genome-wide significant (p<1×10-7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10-6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance: These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages as well as in vivo. © 2011 Bol et al

    Quantifying HIV transmission flow between high-prevalence hotspots and surrounding communities: a population-based study in Rakai, Uganda

    Get PDF
    Background International and global organisations advocate targeting interventions to areas of high HIV prevalence (ie, hotspots). To better understand the potential benefits of geo-targeted control, we assessed the extent to which HIV hotspots along Lake Victoria sustain transmission in neighbouring populations in south-central Uganda. Methods We did a population-based survey in Rakai, Uganda, using data from the Rakai Community Cohort Study. The study surveyed all individuals aged 15–49 years in four high-prevalence Lake Victoria fishing communities and 36 neighbouring inland communities. Viral RNA was deep sequenced from participants infected with HIV who were antiretroviral therapy-naive during the observation period. Phylogenetic analysis was used to infer partial HIV transmission networks, including direction of transmission. Reconstructed networks were interpreted through data for current residence and migration history. HIV transmission flows within and between high-prevalence and low-prevalence areas were quantified adjusting for incomplete sampling of the population. Findings Between Aug 10, 2011, and Jan 30, 2015, data were collected for the Rakai Community Cohort Study. 25 882 individuals participated, including an estimated 75·7% of the lakeside population and 16·2% of the inland population in the Rakai region of Uganda. 5142 participants were HIV-positive (2703 [13·7%] in inland and 2439 [40·1%] in fishing communities). 3878 (75·4%) people who were HIV-positive did not report antiretroviral therapy use, of whom 2652 (68·4%) had virus deep-sequenced at sufficient quality for phylogenetic analysis. 446 transmission networks were reconstructed, including 293 linked pairs with inferred direction of transmission. Adjusting for incomplete sampling, an estimated 5·7% (95% credibility interval 4·4–7·3) of transmissions occurred within lakeside areas, 89·2% (86·0–91·8) within inland areas, 1·3% (0·6–2·6) from lakeside to inland areas, and 3·7% (2·3–5·8) from inland to lakeside areas. Interpretation Cross-community HIV transmissions between Lake Victoria hotspots and surrounding inland populations are infrequent and when they occur, virus more commonly flows into rather than out of hotspots. This result suggests that targeted interventions to these hotspots will not alone control the epidemic in inland populations, where most transmissions occur. Thus, geographical targeting of high prevalence areas might not be effective for broader epidemic control depending on underlying epidemic dynamics. Funding The Bill & Melinda Gates Foundation, the National Institute of Allergy and Infectious Diseases, the National Institute of Mental Health, the National Institute of Child Health and Development, the Division of Intramural Research of the National Institute for Allergy and Infectious Diseases, the World Bank, the Doris Duke Charitable Foundation, the Johns Hopkins University Center for AIDS Research, and the President's Emergency Plan for AIDS Relief through the Centers for Disease Control and Prevention

    Characterization of Molecular Cluster Detection and Evaluation of Cluster Investigation Criteria Using Machine Learning Methods and Statewide Surveillance Data in Washington State

    No full text
    Molecular cluster detection can be used to interrupt HIV transmission but is dependent on identifying clusters where transmission is likely. We characterized molecular cluster detection in Washington State, evaluated the current cluster investigation criteria, and developed a criterion using machine learning. The population living with HIV (PLWH) in Washington State, those with an analyzable genotype sequences, and those in clusters were described across demographic characteristics from 2015 to2018. The relationship between 3- and 12-month cluster growth and demographic, clinical, and temporal predictors were described, and a random forest model was fit using data from 2016 to 2017. The ability of this model to identify clusters with future transmission was compared to Centers for Disease Control and Prevention (CDC) and the Washington state criteria in 2018. The population with a genotype was similar to all PLWH, but people in a cluster were disproportionately white, male, and men who have sex with men. The clusters selected for investigation by the random forest model grew on average 2.3 cases (95% CI 1.1&ndash;1.4) in 3 months, which was not significantly larger than the CDC criteria (2.0 cases, 95% CI 0.5&ndash;3.4). Disparities in the cases analyzed suggest that molecular cluster detection may not benefit all populations. Jurisdictions should use auxiliary data sources for prediction or continue using established investigation criteria
    corecore