340 research outputs found

    The Vehicle, Spring 2004

    Get PDF
    Table of Contents Mother Nature\u27s PotentialsChristina Leepage 4 The Elephant in the RoomErika Olsenpage 5 Sin of MortalsHeather Harmonpage 6 Autumn GoldBrianne Kennedypage 7 Flight to the SeaBrianne Kennedypage 8 SmileTravis A. Probstpage 9 The BodyLavada Rainierpage 10 GuessTravis A. Probstpage 11 MonopolyCatherine Apodacapage 12 MourningLavada Rainierpage 13 A Premonition During My Sister\u27s PregnancyLavada Rainierpage 14 The Things I LoveSarah Chancepage 15 Flights of BirdsLavada Rainierpage 16 The Slumbering LibrarianJosh Sopiarzpage 16 Untitled (1)Josh Reeleypage 18 Untitled (2)Josh Reeleypage 19 Untitled (3)Josh Reeleypage 20 Self-IntrospectionLiz Toyntonpage 21 Mother\u27s DayCatherine Apodacapage 22 CarolJosh Sopiarzpage 23 PerhapsWillie Griggspage 24 PoemWillie Griggspage 25 In Longing for WealthWillie Griggspage 26 Crisis by DesignCatherine Apodacapage 27 UntitledLiz Toyntonpage 28 SleetCara Moranpage 29https://thekeep.eiu.edu/vehicle/1081/thumbnail.jp

    The Vehicle, Spring 2004

    Get PDF
    Table of Contents Mother Nature\u27s PotentialsChristina Leepage 4 The Elephant in the RoomErika Olsenpage 5 Sin of MortalsHeather Harmonpage 6 Autumn GoldBrianne Kennedypage 7 Flight to the SeaBrianne Kennedypage 8 SmileTravis A. Probstpage 9 The BodyLavada Rainierpage 10 GuessTravis A. Probstpage 11 MonopolyCatherine Apodacapage 12 MourningLavada Rainierpage 13 A Premonition During My Sister\u27s PregnancyLavada Rainierpage 14 The Things I LoveSarah Chancepage 15 Flights of BirdsLavada Rainierpage 16 The Slumbering LibrarianJosh Sopiarzpage 16 Untitled (1)Josh Reeleypage 18 Untitled (2)Josh Reeleypage 19 Untitled (3)Josh Reeleypage 20 Self-IntrospectionLiz Toyntonpage 21 Mother\u27s DayCatherine Apodacapage 22 CarolJosh Sopiarzpage 23 PerhapsWillie Griggspage 24 PoemWillie Griggspage 25 In Longing for WealthWillie Griggspage 26 Crisis by DesignCatherine Apodacapage 27 UntitledLiz Toyntonpage 28 SleetCara Moranpage 29https://thekeep.eiu.edu/vehicle/1081/thumbnail.jp

    sĂ­game v3: Gas Fragmentation in Postprocessing of Cosmological Simulations for More Accurate Infrared Line Emission Modeling

    Get PDF
    We present an update to the framework called Simulator of Galaxy Millimeter/submillimeter Emission (SÍGAME). SÍGAME derives line emission in the far-infrared (FIR) for galaxies in particle-based cosmological hydrodynamics simulations by applying radiative transfer and physics recipes via a postprocessing step after completion of the simulation. In this version, a new technique is developed to model higher gas densities by parameterizing the probability distribution function (PDF) of the gas density in higher-resolution simulations run with the pseudoLagrangian, Voronoi mesh code AREPO. The parameterized PDFs are used as a look-up table, and reach higher densities than in previous work. SÍGAME v3 is tested on redshift z = 0 galaxies drawn from the SIMBA cosmological simulation for eight FIR emission lines tracing vastly different phases of the interstellar medium. This version of SÍGAME includes dust radiative transfer with SKIRT and high-resolution photoionization models with CLOUDY, the latter sampled according to the density PDF of the AREPO simulations to augment the densities in the cosmological simulation. The quartile distributions of the predicted line luminosities overlap with the observed range for nearby galaxies of similar star formation rate (SFR) for all but two emission lines: [O I]63 and CO(3–2), which are overestimated by median factors of 1.3 and 1.0 dex, respectively, compared to the observed line–SFR relation of mixed-type galaxies. We attribute the remaining disagreement with observations to the lack of precise attenuation of the interstellar light on sub-grid scales (200 pc) and differences in sample selection

    Consensus guidelines for sarcopenia prevention, diagnosis and management in Australia and New Zealand

    Get PDF
    Background: Sarcopenia is an age-associated skeletal muscle condition characterized by low muscle mass, strength, and physical performance. There is no international consensus on a sarcopenia definition and no contemporaneous clinical and research guidelines specific to Australia and New Zealand. The Australian and New Zealand Society for Sarcopenia and Frailty Research (ANZSSFR) Sarcopenia Diagnosis and Management Task Force aimed to develop consensus guidelines for sarcopenia prevention, assessment, management and research, informed by evidence, consumer opinion, and expert consensus, for use by health professionals and researchers in Australia and New Zealand. Methods: A four-phase modified Delphi process involving topic experts and informed by consumers, was undertaken between July 2020 and August 2021. Phase 1 involved a structured meeting of 29 Task Force members and a systematic literature search from which the Phase 2 online survey was developed (Qualtrics). Topic experts responded to 18 statements, using 11-point Likert scales with agreement threshold set a priori at >80%, and five multiple-choice questions. Statements with moderate agreement (70%–80%) were revised and re-introduced in Phase 3, and statements with low agreement (80%) were confirmed by the Task Force in Phase 4. Conclusions: The ANZSSFR Task Force present 17 sarcopenia management and research recommendations for use by health professionals and researchers which includes the recommendation to adopt the EWGSOP2 sarcopenia definition in Australia and New Zealand. This rigorous Delphi process that combined evidence, consumer expert opinion and topic expert consensus can inform similar initiatives in countries/regions lacking consensus on sarcopenia

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Timing of seasonal influenza epidemics for 25 countries in Africa during 2010-19: a retrospective analysis.

    Get PDF
    BACKGROUND: Using country-specific surveillance data to describe influenza epidemic activity could inform decisions on the timing of influenza vaccination. We analysed surveillance data from African countries to characterise the timing of seasonal influenza epidemics to inform national vaccination strategies. METHODS: We used publicly available sentinel data from African countries reporting to the WHO Global Influenza Surveillance and Response FluNet platform that had 3-10 years of data collected during 2010-19. We calculated a 3-week moving proportion of samples positive for influenza virus and assessed epidemic timing using an aggregate average method. The start and end of each epidemic were defined as the first week when the proportion of positive samples exceeded or went below the annual mean, respectively, for at least 3 consecutive weeks. We categorised countries into five epidemic patterns: northern hemisphere-dominant, with epidemics occurring in October-March; southern hemisphere-dominant, with epidemics occurring in April-September; primarily northern hemisphere with some epidemic activity in southern hemisphere months; primarily southern hemisphere with some epidemic activity in northern hemisphere months; and year-round influenza transmission without a discernible northern hemisphere or southern hemisphere predominance (no clear pattern). FINDINGS: Of the 34 countries reporting data to FluNet, 25 had at least 3 years of data, representing 46% of the countries in Africa and 89% of Africa's population. Study countries reported RT-PCR respiratory virus results for a total of 503 609 specimens (median 12 971 [IQR 9607-20 960] per country-year), of which 74 001 (15%; median 2078 [IQR 1087-3008] per country-year) were positive for influenza viruses. 248 epidemics occurred across 236 country-years of data (median 10 [range 7-10] per country). Six (24%) countries had a northern hemisphere pattern (Algeria, Burkina Faso, Egypt, Morocco, Niger, and Tunisia). Eight (32%) had a primarily northern hemisphere pattern with some southern hemisphere epidemics (Cameroon, Ethiopia, Mali, Mozambique, Nigeria, Senegal, Tanzania, and Togo). Three (12%) had a primarily southern hemisphere pattern with some northern hemisphere epidemics (Ghana, Kenya, and Uganda). Three (12%) had a southern hemisphere pattern (Central African Republic, South Africa, and Zambia). Five (20%) had no clear pattern (Cîte d'Ivoire, DR Congo, Madagascar, Mauritius, and Rwanda). INTERPRETATION: Most countries had identifiable influenza epidemic periods that could be used to inform authorities of non-seasonal and seasonal influenza activity, guide vaccine timing, and promote timely interventions. FUNDING: None. TRANSLATIONS: For the Berber, Luganda, Xhosa, Chewa, Yoruba, Igbo, Hausa and Afan Oromo translations of the abstract see Supplementary Materials section
    • 

    corecore