117 research outputs found
Mutual information for examining correlations in DNA
This paper examines two methods for finding whether long-range correlations
exist in DNA: a fractal measure and a mutual information technique. We evaluate
the performance and implications of these methods in detail. In particular we
explore their use comparing DNA sequences from a variety of sources. Using
software for performing in silico mutations, we also consider evolutionary
events leading to long range correlations and analyse these correlations using
the techniques presented. Comparisons are made between these virtual sequences,
randomly generated sequences, and real sequences. We also explore correlations
in chromosomes from different species.Comment: 8 pages, 3 figure
Protection against neonatal respiratory viral infection via maternal treatment during pregnancy with the benign immune training agent OMâ85
Objectives
Incomplete maturation of immune regulatory functions at birth is antecedent to the heightened risk for severe respiratory infections during infancy. Our forerunner animal model studies demonstrated that maternal treatment with the microbial-derived immune training agent OM-85 during pregnancy promotes accelerated postnatal maturation of mechanisms that regulate inflammatory processes in the offspring airways. Here, we aimed to provide proof of concept for a novel solution to reduce the burden and potential long-term sequelae of severe early-life respiratory viral infection through maternal oral treatment during pregnancy with OM-85, already in widespread human clinical use.
Methods
In this study, we performed flow cytometry and targeted gene expression (RT-qPCR) analysis on lungs from neonatal offspring whose mothers received oral OM-85 treatment during pregnancy. We next determined whether neonatal offspring from OM-85 treated mothers demonstrate enhanced protection against lethal lower respiratory infection with mouse-adapted rhinovirus (vMC0), and associated lung immune changes.
Results
Offspring from mothers treated with OM-85 during pregnancy display accelerated postnatal seeding of lung myeloid populations demonstrating upregulation of function-associated markers. Offspring from OM-85 mothers additionally exhibit enhanced expression of TLR4/7 and the IL-1ÎČ/NLRP3 inflammasome complex within the lung. These treatment effects were associated with enhanced capacity to clear an otherwise lethal respiratory viral infection during the neonatal period, with concomitant regulation of viral-induced IFN response intensity.
Conclusion
These results demonstrate that maternal OM-85 treatment protects offspring against lethal neonatal respiratory viral infection by accelerating development of innate immune mechanisms crucial for maintenance of local immune homeostasis in the face of pathogen challenge
Transplacental innate immune training via maternal microbial exposure: role of XBP1-ERN1 axis in dendritic cell precursor programming
We recently reported that offspring of mice treated during pregnancy with the microbial-derived immunomodulator OM-85 manifest striking resistance to allergic airways inflammation, and localized the potential treatment target to fetal conventional dendritic cell (cDC) progenitors. Here, we profile maternal OM-85 treatment-associated transcriptomic signatures in fetal bone marrow, and identify a series of immunometabolic pathways which provide essential metabolites for accelerated myelopoiesis. Additionally, the cDC progenitor compartment displayed treatment-associated activation of the XBP1-ERN1 signalling axis which has been shown to be crucial for tissue survival of cDC, particularly within the lungs. Our forerunner studies indicate uniquely rapid turnover of airway mucosal cDCs at baseline, with further large-scale upregulation of population dynamics during aeroallergen and/or pathogen challenge. We suggest that enhanced capacity for XBP1-ERN1-dependent cDC survival within the airway mucosal tissue microenvironment may be a crucial element of OM-85-mediated transplacental innate immune training which results in postnatal resistance to airway inflammatory disease
Interactive Assistance for Tour Planning
Abstract. It is often difficult for individual tourists to make a sightseeing tour plan because they do not have prior knowledge about the destination. Although several systems have been developed for assisting the userâs tour planning, these systems lack interactivity, while demanding a lot of data input from the user. In this paper, we introduce a new computer-aided tour planning system, called CT-Planner, which realizes collaborative tour planning. The system provides several tour plans with different characters and asks the user to give feedback. The feedback is utilized by the system for inferring the userâs preferences and then revising the tour plans. This cycle is repeated until the user is satisfied with the final plan. Thanks to this cycle the user does not have to register his profiles in advance. In addition, the system allows the user to specify his special requests, which leads to a more satisfying experience of computer-aided tour planning
Sustained axon regeneration induced by co-deletion of PTEN and SOCS3
A formidable challenge in neural repair in the adult central nervous system (CNS) is the long distances that regenerating axons often need to travel in order to reconnect with their targets. Thus, a sustained capacity for axon regeneration is critical for achieving functional restoration. Although deletion of either phosphatase and tensin homologue (PTEN), a negative regulator of mammalian target of rapamycin (mTOR), or suppressor of cytokine signalling 3 (SOCS3), a negative regulator of Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, in adult retinal ganglion cells (RGCs) individually promoted significant optic nerve regeneration, such regrowth tapered off around 2âweeks after the crush injury. Here we show that, remarkably, simultaneous deletion of both PTEN and SOCS3 enables robust and sustained axon regeneration. We further show that PTEN and SOCS3 regulate two independent pathways that act synergistically to promote enhanced axon regeneration. Gene expression analyses suggest that double deletion not only results in the induction of many growth-related genes, but also allows RGCs to maintain the expression of a repertoire of genes at the physiological level after injury. Our results reveal concurrent activation of mTOR and STAT3 pathways as key for sustaining long-distance axon regeneration in adult CNS, a crucial step towards functional recovery
The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction
Purpose: Neurodevelopmental disorders (NDD) caused by protein
phosphatase 2A (PP2A) dysfunction have mainly been associated
with de novo variants in PPP2R5D and PPP2CA, and more rarely in
PPP2R1A. Here, we aimed to better understand the latter by
characterizing 30 individuals with de novo and often recurrent
variants in this PP2A scaffolding Aα subunit.
Methods: Most cases were identified through routine clinical
diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits.
Results: We describe 30 individuals with 16 different variants in
PPP2R1A, 21 of whom had variants not previously reported. The severity
of developmental delay ranged from mild learning problems to severe
intellectual disability (ID) with or without epilepsy. Common features
were language delay, hypotonia, and hypermobile joints. Macrocephaly
was only seen in individuals without B55α subunit-binding deficit, and
these patients had less severe ID and no seizures. Biochemically more
disruptive variants with impaired B55α but increased striatin binding
were associated with profound ID, epilepsy, corpus callosum hypoplasia,
and sometimes microcephaly.
Conclusion: We significantly expand the phenotypic spectrum of
PPP2R1A-related NDD, revealing a broader clinical presentation of the
patients and that the functional consequences of the variants are more
diverse than previously reported
A clustering of heterozygous missense variants in the crucial chromatin modifier WDR5 defines a new neurodevelopmental disorder
WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals, and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (N=11), intellectual disability (N=9), epilepsy (N=7) and autism spectrum disorder (N=4). Additional phenotypic features included abnormal growth parameters (N=7), heart anomalies (N=2) and hearing loss (N=2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders
MED27 Variants Cause Developmental Delay, Dystonia, and Cerebellar Hypoplasia
The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021Peer reviewe
Thermoregulatory and Behavioral Responses of Buffaloes With and Without Direct Sun Exposure During Abnormal Environmental Condition in MarajĂł Island, ParĂĄ, Brazil.
This study aimed to assess the effect of thermal-hydraulic variables in female buffaloes with or without direct solar exposure in a year of strong El Niño through behavior responses and infrared thermography to reinforce the environmental comfort indicators, in Marajó Island, Parå, Brazil. The experiment was carried out in Cachoeira do Arari municipality and 20 female Murrah buffaloes were randomly assigned to two groups: Group WS (n = 10) was kept in pickets with native trees. Group NS (n = 10) was kept in crush squeeze with no shade. Data on air temperature (AT, °C), relative air humidity (RH, %), wind velocity (WV, m/s), rectal temperature (RT), respiratory rate (RR), and body surface temperature (BST) were collected. Practical Buffalo Comfort Climatic Condition Index (BCCCI), practical Buffalo Environmental Comfort Index (BECI), Temperature and Humidity Index (THI) and Benezra's Thermal Comfort Index (BTCI) were obtained. Infrared thermography analysis was carried out with a FLIR T-series T640bx camera. Data on time spent grazing, ruminating, idleness, and in other activities were recorded. A significant difference in AT of ~1°C was found between the groups at 6 a.m., 10 a.m. and 6 p.m. THI indicated emergency conditions. Female buffaloes were at danger PBCCCI conditions at 2 p.m. There was also significant difference for RT between treatments at 10 a.m., 2 p.m. and 6 p.m., whose values were higher (P < 0.05) for animals from NS Group, with the highest mean time at 2 p.m. Pearson correlation was significant and positive (P < 0.01) between RT mean and VUL, TI and ORB mean, maximum and minimum temperatures. The total time given to grazing was 518.2 min for the group NS and 629.5 min for the group WS. Rumination was more pronounced in the afternoon shift for the group NS. Buffaloes kept in a system with trees graze, ruminate and perform other activities with more intensity than animals raised in systems without access to shade, and tend to hyperthermia, mainly at 10 a.m. and 2 p.m., in Marajó Island, Parå, Brazil
Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria
Most free-living planktonic cells are streamlined and in spite of their limitations in functional flexibility, their vast populations have radiated into a wide range of aquatic habitats. Here we compared the metabolic potential of subgroups in the Alphaproteobacteria lineage SAR11 adapted to marine and freshwater habitats. Our results suggest that the successful leap from marine to freshwaters in SAR11 was accompanied by a loss of several carbon degradation pathways and a rewiring of the central metabolism. Examples for these are C1 and methylated compounds degradation pathways, the EntnerâDoudouroff pathway, the glyoxylate shunt and anapleuretic carbon fixation being absent from the freshwater genomes. Evolutionary reconstructions further suggest that the metabolic modules making up these important freshwater metabolic traits were already present in the gene pool of ancestral marine SAR11 populations. The loss of the glyoxylate shunt had already occurred in the common ancestor of the freshwater subgroup and its closest marine relatives, suggesting that the adaptation to freshwater was a gradual process. Furthermore, our results indicate rapid evolution of TRAP transporters in the freshwater clade involved in the uptake of low molecular weight carboxylic acids. We propose that such gradual tuning of metabolic pathways and transporters toward locally available organic substrates is linked to the formation of subgroups within the SAR11 clade and that this process was critical for the freshwater clade to find and fix an adaptive phenotype.This work was supported by the Swedish Research Council (Grant Numbers 2012-4592 to AE and 2012-3892 to SB) and the Communiy Sequencing Programme of the US Department of Energy Joint Genome Institute. The work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231
- âŠ