4,837 research outputs found

    The Siege at Hue

    Get PDF

    Charts relating the compressive buckling stress of longitudinally supported plates to the effective deflectional and rotational stiffness of the supports

    Get PDF
    A stability analysis is made of a long flat rectangular plate subjected to a uniform longitudinal compressive stress and supported along its longitudinal edges and along one or more longitudinal lines by elastic line supports. The elastic supports possess deflectional and rotational stiffness. Such configuration is an idealization of the compression cover skin and internal structure of a wing and tail surfaces. The results of the analysis are presented in the form of charts in which the buckling-stress coefficient is plotted against the buckle length of the plate for a wide range of support stiffnesses. The charts make possible the determination of the compressive buckling stress of plates supported by members whose stiffness may or may not be defined by elementary beam bending and twisting theory but yet whose effective restraint is amenable to evaluation. The deflectional and rotational stiffness provided by longitudinal stiffeners and full-depth webs is discussed and numerical examples are given to illustrate the application of the charts to the design of wing structures

    Spatial and seasonal variability in elemental content, δ13C, and δ15N ofThalassia testudinum from South Florida and its implications for ecosystem studies

    Get PDF
    Elemental and isotopic composition of leaves of the seagrassThalassia testudinum was highly variable across the 10,000 km2 and 8 years of this study. The data reported herein expand the reported range in carbon:nitrogen (C:N) and carbon:phosphorus (C:P) ratios and δ13C and δ15N values reported for this species worldwide; 13.2–38.6 for C:N and 411–2,041 for C:P. The 981 determinations in this study generated a range of −13.5‰ to −5.2‰ for δ13C and −4.3‰ to 9.4‰ for δ15N. The elemental and isotope ratios displayed marked seasonality, and the seasonal patterns could be described with a simple sine wave model. C:N, C:P, δ13C, and δ15N values all had maxima in the summer and minima in the winter. Spatial patterns in the summer maxima of these quantities suggest there are large differences in the relative availability of N and P across the study area and that there are differences in the processing and the isotopic composition of C and N. This work calls into question the interpretation of studies about nutrient cycling and food webs in estuaries based on few samples collected at one time, since we document natural variability greater than the signal often used to imply changes in the structure or function of ecosystems. The data and patterns presented in this paper make it clear that there is no threshold δ15N value for marine plants that can be used as an unambiguous indicator of human sewage pollution without a thorough understanding of local temporal and spatial variability

    Isolating the effects of visual imagery on prospective memory

    Get PDF
    Two experiments investigated the role of visual imagery in prospective memory (PM). In experiment 1, 140 participants completed a general knowledge quiz which included a PM task of writing a letter ‘X’ next to any questions that referred to space. Participants either visualised themselves performing this task, verbalised an implementation intention about the task, did both, or did neither. Performance on the PM task was enhanced in both conditions involving visual imagery but not by implementation intentions alone. In experiment 2, 120 participants imagined themselves writing a letter ‘X’ next to questions about space, or in a bizarre imagery condition imagined themselves drawing an alien next to those questions. Relative to the control condition, PM was significantly enhanced when participants imagined writing a letter ‘X’ next to the target questions, but not by the bizarre imagery task. The findings indicate that the robust effects of imagery observed in retrospective memory also extend to PM

    酵素の作用(退官記念最終講義)

    Get PDF
    Contains sequential images of Yale logo experimental treatment, replicate

    Evolution of an ancient protein function involved in organized multicellularity in animals.

    Get PDF
    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals

    Watershed-Scale Drivers of Air-Water CO2 Exchanges in Two Lagoonal North Carolina (USA) Estuaries

    Get PDF
    Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3mmolCm(-2)d(-1) in the NeuseRE and NewRE, respectively. Large-scale pCO(2) variations were driven by changes in freshwater age, which modulates nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO(2) undersaturation was observed at intermediate freshwater ages, between 2 and 3weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence ecosystem biogeochemical cycling, trophic state, and response to future perturbations. Plain Language Summary Estuaries release nearly as much CO2 to the atmosphere as is taken up over the continental shelf. However, estuarine emissions vary greatly across space and time, contributing significantly to the uncertainty of global carbon budgets. In this study, we assess spatial and temporal variability in CO2 emissions from adjacent estuaries in North Carolina, USA. These emissions varied across seasons and river discharge conditions but were relatively small when assessed as annual averages. Freshwater age (time freshwater spends in estuary before being flushed to ocean) was an important driver of CO2 dynamics in both estuaries, due to its role in regulating nutrient, DOC, and DIC supply while also affecting the rate at which phytoplankton are flushed from the system. While the relationship between freshwater age and CO2 was similar for both estuaries, we show that the various external and internal inputs of CO2 were quite different. Riverine CO2 inputs drove CO2 emissions in the river-dominated estuary, while internally produced CO2 (from community respiration) was more important in the marine-dominated estuary. We also demonstrate that poorly buffered regions in both estuaries are particularly vulnerable to acidification, with potentially negative impacts on calcifying organisms
    corecore