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SUMMARY

A stability analysis is made of a long flat rectangular plate sub-
Jjected to a uniform longitudinal compressive stress and supported along
its longltudinal edges and along one or more other longitudinal lines
by elastic line supports. The elastic supports possess deflectional
and rotational stiffness. The results of the analysis are presented
in the form of charts in which the buckling-stress coefficient is plotted
against the buckle length of the plate for a wide range of support stiff-
nesses. The charts make possible the determination of the compressive
buckling stress af plates supported by members whose sciffness may or
may not be defined by elementary beam bending and twisting theory but
yet whose effective restraint is amenable to evaluation. The deflec-
tional and rotational stiffness provided by longitudinal stiffeners
and full-depth webs is discussed and numerical examples are given to
illustrate the application of the charts to the design of wing structures.

INTRODUCTION

In current thin-wing construction, thick cover plates are often
supported or stiffened by thinner gage members whose stiffness deter-
mines the stability and strength of the cover plates. Experimental
evidence is accumulating which indicates that, for certain longitudinal-
stiffener proportions and for certain full-depth webs such as are found
in multiwedb construction, the supporting stiffness of these members must
be carefully evaluated if reliable buckling stresses for the wing covers
are to be calculated. The cross sections of these members often deform
locally in a manner which permits deflection and rotation of the attached
cover plate without developing the idealized beam or plate stiffness of
the supporting member. For such construction, buckling stresses may

not be predicted by stability criteria based upon beam stiffness quantities
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such ags EI for bending and GJ for torsion, or by criteria based upon
an assumption of integral Jjoints between cover plates and support members.
The desirability of relating plate stability to a stiffness parameter
which defines the actual or effective stiffness provided by the support
is therefore evident.

The purpose of this paper is to present stability criteria for s
number of supported-plate configurations frequently occurring in aircraft-
wing construction in which criteria the theoretical elastic buckling-
stress coefficient is given as a function of the buckle length of the
plate for a range of effective deflectional or torsional stiffnesses of
the supports. In order to use the criteria for a particular supported-
plate configuration, the effective restraint provided by the supports
must be amenable to evaluation. A section of the paper is devoted to
a discussion of procedures for evaluation of the deflectional and tor-
slonal stiffness provided by longitudinal stiffeners and full-depth webs,
including the effects of cross-sectional distortion. Numerical examples
are then given which illustrate this evaluation for practical design
problems. The derivations of the stability criteria are included in
the appendixes.

SYMBOLS
b width of plate between intermediate supports
A length of buckles
B =A\b
t thickness of plate
X,y coordinate axes in length and width directions,
respectively
W deflection normal to plane of plate
e} number of bays in width of plate
q number of buckles occurring across width of plate
n integer
an Fourier coefficilents
N compressive load per unit width acting in x-direction

(length direction) required to cause buckling
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nondimensional buckling-load coefficient, Nb2/n2D
compressive stress
critical compressive stress
Young's modulus of elasticity
Poisson's ratio
Et>

plate flexural stiffness per unit width,

12(1 - p8)

deflectional stiffness per unit length of support, 1b/in.2

rotational stiffness of intermediate support (moment per
unit length required to produce a rotation of one radian)

rotational stiffness of edge support (moment per unit
length required to produce a rotation of one radian)

nondimensional deflectional restraint parameter

nondimensional rotational restraint parameters

nondimensional rotational restraint parameter from
reference 1

plate edge rotational stiffnesses defined in reference 2

plate carry-over factor defined in reference 2

energlies of deformation

work of applied stress
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total potential energy of system
energy parameter

Lagrangian multipliers

coefficients defining amplitude of support deflection
cross-sectional area of stiffener

moment of inertia of stiffener cross sectinon about its
own center of gravity

modal coefficient affecting deflectional stiffness of
longitudinal stiffener
nondimensional bending stiffness parameter for stiffeners

of sturdy cross section

ratio of average stress in stiffener to average stress
in plate

Fuler column load
torsion constant
shear modulus of elasticity

torsion coefficient which takes into account bending
stiffness

polar moment of inertia
amplitude of sinusoidally distributed lateral load

lateral deflection of longitudinally compressed stiffener
subjected to sinusoidal lateral load

depth of web

thickness of web

Ety”
plate flexural stiffness per unit width of web, B —
12(1 - pe)
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ky buckling-stress coefficient of web

z distance between center of gravity of stiffener and
middle plane of plate

p radius of gyration of stiffener about its centroid

STATEMENT OF PROBLEM

In figure 1 are shown portions of several wing cross sections in
which the material carrying bending stress is mainly concentrated in
the thick plates forming the wing contour. Rumning spanwise are a num-
ber of lighter structural members in the form of longitudinal stiffeners
and full-depth webs. In addition to carrying longitudinal stresses
these members must resist cover-plate deflection and rotation at their
respective locations by virtue of their stiffness. If the stiffness
characteristics of these members can be defined, the buckling stress
for the construction can be calculated.

In this analysis the assumption is made that longitudinal stiffeners
and full-depth webs will provide a restraint to the attached cover plate
which is proportional to the distortions of these support members. This
condition is met 1f sinusoidally distributed normal loads or torsional
moments on the supports are assumed to cause sinusoidally distributed
distortions which are in phase with the loading. Thus support stiffness,
which is the ratio of load intensity to distortion at any point, is a
constant along the length of the support. With this support character-
istic, the attached plate will buckle with deflections and rotations
that are distributed sinusoldally in the length direction.

A cross section of the cover-plate buckling modes considered most
likely to occur are sketched at the right of each wing cross section in
figure 1 and are denoted cases 1 to 6. Cases 1, 2, and 3 primarily
involve the deflectional stiffness characteristics of the support mem-
bers, and cases 4, 5, and 6 involve the torsional stiffness character-
istics of the supports. For a given wing cross section, both modes of
buckling should be investigated to determine which mode leads to the
lower buckling stress.

Cases 1 and 4 represent the buckling modes of a cover plate sup-
ported by substantial shear webs with an intermediate spanwise member
(shown as a longitudinal stiffener) centrally located between the webs.
The shear webs are assumed to prevent deflection but may offer a tor-
sional restraint to the cover plate. In case 1 the stability of the
compressed plate was investigated for a range of deflectional stiffnesses
of the intermediate support and in case 4 the torsional stiffness of the
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supports was considered. Because the two lowest buckling modes are
either symmetrical or antisymmetrical with respect to the spanwise center
line of the plate, it is not necessary to consider both the deflectional
and rotational stiffness of the support simultaneously.

Cases 2 and 5 represent the most likely buckling modes for a cover
plate with two equally spaced spanwise stiffening members of equal
stiffness between shear webs. 1In case 2 the effect of support deflec-
tional stiffness was investigated by assuming the torsional stiffness
of the intermediate supports to be zero. The torsionasl stiffness of
the intermediate supports was considered in case 5 with the assumption
that the supports are capable of preventing plate deflection at their
locations.

Cases 3 and 6 represent the most likely buckling modes for a plate
stabllized by many spanwise lines of support of identical stiffness.
These supports may be full-depth webs, as indicated in figure 1, or
longitudinal stiffeners. In case 3, the deflectional stiffness of the
supports was considered by assuming the support torsional stiffness to
be zero. Torsional stiffness of the supports was considered in case 6
in which the deflections along the supports are assumed to be zero.

The loading and support conditions for the six cases considered
are shown schematically in figure 2. The compression cover plate is
represented by a uniformly compressed long flat plate which is simply
supported at the loaded edges. The deflectional stiffness of the sup-
ports 1is represented by an elastic spring whose stiffness per unit
length is denoted by V. The stiffness  may include the flexibility
of the tension cover of the wilng in those constructions where this
flexibility would have an effect on the stability of the compression
cover. The parameter  as defined in this paper 1s a generalization
of the foundation modulus concept as used by Timoshenko for beams on
an elastic foundation (ref. 3). The support torsional stiffness param-
eters are denoted by 7y and a. The parameter 7y 1s associated with
the torsional stiffness of the nondeflecting shear webs and o 1is
assoclated with the torsional stiffness of the intermediate supports.
These two parameters are equivalent to the torsional stiffness param-
eter LSy defined by Lundquist and Stowell in reference 1.

For each of the first three cases a stability criterion in closed
form is derived by the Lagrangian multiplier method (ref. 4). For the
last three cases a stability criterion is obtained by using the prin-
ciples of moment distribution explalined in reference 2. With these
stabllity criteria, numerical calculations have been made and are pre-
sented 1n design-chart form.
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PRESENTATION OF STABILITY CRITERIA

Cases 1, 2, and 3.- The stability criteria for cases 1, 2, and 3
which involve the deflectional stiffness of the intermediate supports
are presented in appendix A as equations (A19), (A24), and (A28). 1In
these equations, the effective deflectional stiffness  of the sup-

ports 1s contained in the nondimensional parameter ¢b5/ﬂhD, and the
effective torsional stiffness 7y provided along the shear webs is con-

tained in the nondimensional parameter 7b/ﬁ2D. Values of the param-
eter ij/nuD may be determined from these equations as a function of

2
the compressive buckling-stress coefficient k = Nb= and the ratio of

22D
buckle length to bay width A/b for assigned values of the torsional

restraint parameter 7b/xZD.

Two sets of numerical calculations have been made by assigning the
values O and o« to 7b/n2D; these values correspond to simple support
and complete fixity, respectively, along the shear webs. These numerical
results are presented in tables I, II, and III. Cross plots of the
values in the tables have been made to form design charts (figs. 3 to 7).
From these charts, the combinations of wb5/nuD, k, and A/b at which
buckling is initiated, may be read. The cutoffs in figures 5 and 7
define the values of bi/nhD at which general instability involving
deflection of the cover and the supports changes to local buckling of
the cover (no support deflection) in accordance with the assumption
made that the supports possess zero torsional stiffness.

In order to use the charts for plates on particular types of sup-

ports, the parameter Wb5/n4D for the support must be evaluated. For
the usual type of support, such as a longitudinal stiffener, or a full-

depth web, WbB/nhD will be a function of the stresses in the support
and the wave length of buckling, as well as the physical characteristics

of the support. A discussion of the evaluation of WbB/ﬂhD for longi-
tudinal stiffeners and webs is given in the section entitled "Effective
Stiffness of Supports," and numerical examples illustrating the procedure
are given in a subseguent section entitled "I1lustrative Examples."

Cases 4, 5, and 6.- For cases 4, 5, and 6, the cover is restrained
by equally spaced nondeflecting supports of equal rotation stiffness «
while the plate side edges are restrained by nondeflecting supports of
equal rotational stiffness 7. The stability criteria for these cases
are given in appendix B as equations (B2), (B6), and (B10). Values of

the rotational stiffness parameter ab/neD required to develop a given
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2
compressive buckling-stress coefficient k = b= in the cover at a

7
given ratio of buckle length to bay width K/b may be determined from

these equations for assigned values of the edge-restraint parameter 7b/n2D.
As was done for the deflectional stiffness cases, numerical results are
presented for 7b/n2D equal to O and . The numerical results were
obtained by using the stiffness tables of reference 5 and have been

plotted to form design charts (figs. 8 to 12).

For a glven design problem in which the supports have both deflec-
tional and rotational stiffness, the buckling-stress coefficient obtained
by considering the mode of buckling which involves the rotational stiff-
ness of the supports must be compared with the coefficient obtained by
considering the mode involving primarily the deflectional stiffness of
the supports. The lower of these two values defines the buckling stress
for the configuration. The evaluation of the torsional stiffness of
longltudinal stiffeners and full-depth webs is discussed in the next
section.

EFFECTIVE STIFFNESS OF SUPPORTS

General design charts have been presented, which, with one reserva-
tion, are independent of the medium providing restraint to the compres-
sion plate. The reservation 1s that the supporting medium must be of
such a type that sinusoidally distributed normal loads and torsional
moments cause slinusoldally distributed distortions which are in phase
wlith the loading. Such behavior is characteristic of beam stiffness,
as provided by longltudinal stiffeners of sturdy cross section. The
distortions of the unstiffened webs during buckling of a multiweb beam
also appear to be distributed sinusoidally along the length of the beam,
and the reactions of the attachment flange on the compression cover of
the beam are assumed to be proportional to the distortions.

A thorough analysis of the stiffness characteristics including
effects of cross-sectional distortions and shear distortion of these
two types of supports is beyond the scope of this paper; however, it
is shown how these effects may be included in an evaluation of the
stiffness parameters Wb3/n4D and ab/ngD.

Stiffness of longitudinal stiffeners.- The most common type of
supporting medium for plates 1s the longitudinal stiffener which par-
ticipates In carrying the compressive load. If the distortion charac-
teristics of such a stiffener are defined by elementary beam bending
theory, the deflection under a lateral load of amplitude g distributed
sinusoidally over a length A 1is
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where 0Ag 1s the end load carried by the stiffener, and I e 1s the

moment of inertia of the stiffener cross section about an axis lying in
a plane parallel to the attached plate. The stiffness of the stiffener,
defined as the ratio of lateral load to deflection, then is

_ L oA
¥ = (%) EIeff<l - Eff) (1)

If the average stress ¢ 1in the stiffener is proportional to the com-

pressive buckling stress acting in the attached plate,  may be
written as

2

Ly Ac
= (LZ\(EI - ck & 4 bD>

or

w> 1o>LL Elerr s x2> (2)
prD"(X oD bt 2

where ¢ is the ratio of the average stress in the stiffener to the
average stress in the plate.

A recent theoretical analysis by Seide (ref. 6) shows that the
effective moment of inertia of longitudinal stiffeners attached to one
side of a uniformly compressed plate may be expressed as a correction
to the moment of inertia of the stiffener about its own center of
gravity Ig. In this form, equation (4) of reference 6 may be written
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(3)

1+ Z —
P4 bt

In equation (3) the quantity 2z 1is the distance between the center of
gravity of the stiffener and the middle plane of the plate, and p 1is
the radius of gyration of the stiffener. The modal coefficient qu

is a function of buckling mode and associated wave length. The varia-
tion of Zpq with Ao taken from reference 6 (which is applicable

when the plate side edges are simply supported and when Poisson's ratio
is 1/3) is given in figure 13. The subscript p denotes the number

of bays in the width of the plate, and q denotes the number of buckles
across the width of the plate (q is equal to 1 for the cases considered
in this paper). With EIers/bD defined, equation (2) should give satis-
factory values of the stiffness parameter wb5/n D for stiffeners of
sturdy cross section; that is, stiffeners whose cross sectional and
shearing distortions under load introduce deflections which are small
compared with the over-all deflection as a beam.

In practical applications stiffeners are often formed from sheet,
which necessitates a bend radius between the web of the stiffener and
the flange for attachment to the sheet. For certain proportions, deflec-
tion of the plate may be appreciably increased by the flexibility of
the attachment flange between the rivet line and the web of the stiffener,
and by shearing distortion in the stiffener. If the total deflection B
is assumed equal to 3y + B, + 63 where &, 1s the deflection due to

bending of the stiffener as a beam, &o 1is the deflection due to flexi-
bility of the stiffener attachment flange, and 65 is the deflection

due to shearing distortion in the stiffener, the effective stiffness
may be written as

1.1 ,1,1
Vol T T

In nondimensional form the effective stiffness is given by

4o - 1
ﬁuD x4D + 24D + x4D
¥ b3 \y3b5

(%)
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where Wlbj/nuD is given by the right-hand side of equation (2),
w2b5/nkD must be evaluated either analytically or experimentally, and

¢5b5/“4D may be calculated. It 1s evident that if either vy, Yo, or
yz approaches zero, the effective stiffness of the stiffener approaches

zero. Any other significant distortions can be included in a similar
manner.

The torsional restraint furnished a plate by a stiffener which
undergoes no cross-sectional distortion when it twists is discussed in
reference 7. The expression for its stiffness (eq. (8) of ref. 7
rewritten in the notation of the present paper) is

%2 52
= %= + X< -
a )\2 (.}J }\ ECpT GIP>

where the quantities J, Cpp, and I, mst be calculated with respect

to an assumed axis of rotation. In nondimensional form, the stiffness
is

2
2 EC I
o&=<2) 9{+,(2b__332_ck,(2L> (5)
2p \A/ \®D 2 17D bot

Expressions similar to equation (5) should be derived for those stiffeners
in which torsional moments applied to the stiffener attachment flange
cause distortion of the cross section of the stiffener when it twists.

Stiffness of full-depth webs.- When the compression cover of a
beam 1s supported by full-depth webs as in a multiweb beam, the effective
stiffness of the webs in resisting sheet deflection and rotation at the
sheet-web juncture must be evaluated. Reference 8, for example, evaluates
the effectiveness of integrally Joilned webs as torslonal restraints on
the cover of a multiweb beam. The assumption made in that analysis is
that the webs possess sufficient deflectional stiffness to form longi-
tudinal nodes along the sheet-web juncture during buckling. The range
of sheet and web proportions for which this assumption is wvalid, however,
is not established.

For built-up construction, the deflectional stiffness provided by
an unstiffened web plate is influenced by the eccentricity of the con-
nection between web and cover plates and by the state of stress exlsting
in the webs of a beam under load. In particular, for channel-type webs
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formed from sheet, appreciable distortions of the attachment flanges

and lateral deflection of the web are produced by either depthwise
crushing or stretching forces. In accordance with the stiffness analysis
for longitudinal stiffeners, the stiffness of the channel should be
analyzed under the action of a depthwise load applied sinuscidally along
the length of the attachment flange in the presence of the stresses that
exlist in the web during beam bending. This procedure is illustrated by
a numerical example in the next sectlion. The outcome of such an analysis
is influenced rather strongly by the assumed eccentricity of the applied
load (with respect to the plane of the web) and by the degree of clamping
that is assumed to be provided by the riveted connection between web
attachment flanges and the cover plates. The importance of these fac-
tors in calculating deflectional stiffnesses has been emphasized by
Bijlaard and Johnston in a recent paper (ref. 9).

With regard to the torsional restraint provided to the compression
cover by integrally Jjoined webs, the restraint data presented in fig-
ure 9 of reference 8 are analagous to equation (5) for the torsional
stiffness of a stiffener; that is, the restraint coefficient € in
figure 9 of reference 8 is a measure of the negative of the stiffness
of a web subjected to a pure bending stress distribution as a function
of buckle length. The relationship between the torsional stiffness
parameter ab/neD of the present paper and the restraint coefficient ¢
is

ab € b Dw (6)

When webs are not integrally joined to the cover, the stiffness of the
attachment should be taken into account when the parameter ab/xzD is
calculated.

ILLUSTRATIVE EXAMPLES

Some of the procedures outlined in the preceding section for calcu-
lating the effective stiffness of supports will be iliustrated in the
solution of two common cover-plate stability problems. The first
example chosen considers the type of restraint offered by the webs of
a multiweb structure and the second considers the effect of one sided
longitudinal stiffeners on plate buckling.

Buckling of a multiweb structure.- When the webs used in a multiweb
wing are formed from sheet metal there is no assurance that the deflec~
tional restraint provided to the beam covers by the formed channel webs
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is sufficient to form longitudinal nodes along the web lines and thus

to force buckling of the type denoted as case 6. The subsequent calcu-
lations illustrate a simple procedure that may be used to lnvestigate
the possible occurrence of buckling in the mode denoted as case 3. The
calculations apply to a multiweb beam tested in pure bending in the
combined load testing machine of the Langley structures research
laboratory. The beam had four identical channel webs (3 cells) and it
is assumed that the analysis for a beam with an infinite number of cells
can be applied. The physical dimensions of the besm are as follows:

Cover width between webs, b, in. . . . . . . . . . . . . . . .. 3.75
Cover thickness, t, in. e ¢ A 25
Channel web depth, by, in. . . . . . . . . .. ... ... ... 2.08
Channel web thickness, ty, in. . . . T ¢ ¢ 15%0)
Bend radius between web and attachment flange, e v e e e .. 0.20
Diameter of web-attachment rivets, in. . . . . . . .. . .. .. 3/16
Pitch of web-attachment rivets, in. . . . . . . . . . . .. .. 9/l6

Distance between midplane of web and rivet line of
attachment to cover, f (attachment flange assumed to be
effectively clamped to cover at the inner edge of the rivet

shanks when closely spaced rivets are used), in. . . . . . . 0.36
Young s modulus for the 75S-T6 aluminum alloy, psi . . . . lO 5 X lO6
Poisson's ratio for the material . . . . e e e e o« .. o« 0.333

In accordance with the procedure outlined in the preceding section,
the deflectional stiffness of the channel must be evaluated under the
action of a sinusoidally distributed lateral load of emplitude g on
the channel web in the presence of the existing bending stresses. This
loading is shown in figure 14(a). The lateral loading is applied a
distance f from the web plane, the distance at which the flange has
been assumed to be completely fixed to the cover plate. In order to
compute the deflection at a given cross section, the channel is idealized
as in figure 14(b). The attachment flange is cut from the web and
assumed to be flat and to be free of longitudinal compression stress.
(This stress i1s usually small in relation to the critical buckling
stress of that portion of the flange between the rivet line and the
web.) Also, since the buckle length is large comnared with the dis-
tance f, the longitudinal bending stiffness of the flange will be neg-
lected in computing the distortions at a given cross section. These
distortions are shown in figure 14(c). The left-hand edge of the attach-
ment flange is free but maintains a zero slope (to match the slope of
the attached plate when buckling occurs in the mode denoted as case 3),
whereas the right-hand edge is supported against deflection and elasti-
cally restrained against rotation by the torsional restraint a'. The
restraint o' represents the resistance to rotation which the web
offers the flange and is a function of both buckle length and the
bending stress in the web. Because of the flexible corner radius that
actually exists between the attachment flange and the web, the beam
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cover 1s assumed to be equally free to deflect up or down with the
attachment flange. Simple tension and compression loading tests on
channels with corner radii verify this assumption. With these simpli-
fying assumptions and boundary conditions, the deflection & at any
cross section may be written

The effective stiffness of the channel, defined as the ratioc of lateral
load to deflection, then is

, = 1 =
3

f 1+1+D—"f-

a f

or in nondimensional form

12('°_w>3 2.
W A\t by 1)
4D (biwf(%wf bf_; € -

Where € 1s the restraint parameter from figure 9 of reference 8 and
is defined as

¢- .M
By




NACA TN 2987 15

Substitution of the physical dimensions of the beam into equation (7)
for bJ/x*D gives

3 173 -
87 - g.gy 22 2 (8)
D 0.173€ - k4

In order to obtain mumerical values for yb3/r*D, the quantity e must
be read from figure 9 of reference 8. Values of € may be obtained
which are compatible with the bending stress distribution in the beam
if the stress in the extreme fiber of the web is assumed to be equal

to the average stress in the beam covers and the lengths of the buckles
in the webs and covers are equal. From these two conditions, the
following equations result:

2 2
Ky = k(%‘i) (%) = 1.92k (9)
%=%%=L&% (10)

The lowest value of the buckling-stress coefficient k which simul-
taneously satisfied equations (8), (9), and (10) is the desired value
and is found by a trlal and error procedure.

The first step in this procedure consists in determining by trial
and error the value of k which satisfied equations (8), (9), and (10)
for an assumed value of A/b. Values of € are read from the curves

of figure 9 of reference 8, and values of ¢b5/nuD are read from fig-
ure 7 of thls paper. This procedure is repeated for several assumed
values of K/b. If this procedure is used, values of k equal to 3.35,
3.25, 3.26, and 3.47 are found for assumed values of A/b equal to 0.7,
0.8, 0.9, and 1.0, respectively. The final step i1s to minimize k with
respect to A/b. The minimum value of k for this mode of buckling

(case 3) is thus found to be 3.24 at % =0.85.
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In order to determine the buckling-stress coefficient that would
be obtained with buckling of the type denoted as case 6, figure 2 of
reference 8 may be used to read the buckling-stress coefficient directly.
The use of thils direct-reading chart involves an assumption of an integral
Jjoint between the webs and the covers, and the indicated k wvalue is
4.1, which 1s considerably higher than the value 3.2 previously obtained.

The actual experimental values of the buckling and fallure stress
for the example beam were

Ocr = 33,400 psi

Ofatlure = 36,600 psi

and the mode of buckling observed was that of the case 3. If the value
k = 3.24 1is substituted into the familiar buckling equation

kqu t 2
o'cr = ______(_
12(1 - u2)

a buckling stress of 34,800 psi is obtained.

Buckling of a plate with one-sided stiffeners.- In calculations of
the buckling stress for plates with stiffeners attached to one side, the
assumption is commonly made that the moment of inertia of the stiffeners
may be calculated about the plane of attachment to the plate. The
following example illustrates the procedure for obtaining the buckling
stress of the plate-stiffener combination when this assumption is made
and also the slight variation in the procedure which is entailed by
using the expression from reference 6 for the effective moment of
inertia of a one-sided stiffener.

Consider the effect of two equally spaced longitudinal stiffeners
of sturdy cross section on the stability of a long compressed plate which
is simply supported along the unloaded edges and supported by deflec-
tionally rigid transverse ribs at equal intervals along the length.
Assume that the stiffeners and ribs offer no torsional restraints to
the plate. The following physical dimensions are given:
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Plate thickness, t, in. . . C e e e e e e e e e . . . 0.188
Plate widtn between stiffeners, b in B T (0]
Rib spacing, in. . e e e e 30
Cross sectional area of l/8 inch thick Z-stiffener,

Ag, sq in. . .. B R 3
Moment of inertia of stiffener about its centroid

I, in¥ . .. .............0.203
Radius of gyration of stiffener, p, in .. . .« . 0.686
Moment of inertia of stiffener about plane of attachment

to sheet, in.% . . . . .. e« e e v .. 0.524
Distance between centrold of stiffener and centroid of

plate, z, in. . . e e e e e .. 0.956
Young's modulus for the 7SS—T6 aluminum alloy, psi . .. .10.5 X% 106
Poisson's ratio for the material e e e c e e e . .. 0.333

The deflectional stiffness of a longitudinal stiffener of sturdy
cross section is given by (see eq. (2))

¥l _ (E)l(meff _kls £>
nhD A bD bt be

i1f the compressive stress in the plate and stiffener are equal. If
EI.rr 1s_calculated about the plane of attachment of stiffener to
Eleff 4

bD

sheet,

Elers _ 12[1 - (0.33)2](0.52!+)E _
bD (4.70)(0.188)3E

If the buckle length is taken to be the rib spacing, the numerical
expression for WbB/nhD is

o3 mo)“ 0431 /30 >2
2= (=) |1719 - k
4D \ 30 4.70 X 0.188 70

0.1080 - 0.01195k

n
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The value of k vwhich satisfies thlis equation simultaneously with the

curves of figure 5 at % = HE%B 1s the desired value. By trial and
error, a common sclution is found at k = 3.55. In order to verify
that k = 3.55 1s the lowest buckling-stress coefficlent, the analysis
is repeated by assuming that two buckles occur between rib stations.

In this particular example, this assumption leads to a much higher

value of k.

The buckling-stress coefficlient is now computed by assuming that
EI
eff

is given by
D

<£)2
EI p
seff _Els)y , _ \P/
bD bD A
1

In order that the modal coefficient qu may be read from the

curves of figure 13, the buckle length must be assumed. The previous
calculation indicated that the length of the buckle is 30 inches and
that it extends across the entire width of the plate. Thus, with p = 3,

q =1, and % = 450 , the value of Zpq read from figure 13 is 0.80.
.70 EI
From the data previously given, eff is then

0.956 2

Blepr _ 12]1 - (0.333)2)(0.203)E L. (0.686>
bD 4.70(0.188)3E L, 0:80 x0.431
4.70 X 0.188 |

= (69.4)(2.394) = 166.0
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Elerr
D

With this value for the expression for yb3/x*D 1is

3
¥ = 5.100 - 0.01195k

4D

By the use of figure 5, the value found for k 1is 3.25. This value is
about 8 percent lower than the value 3.55 obtained when the moment of
inertia was rather arbitrarily chosen. (For other plate-stiffener
comblinations, the difference in the k wvalues calculated by these two
procedures can be either larger or smaller than the difference obtained
in this numerical example.)

The buckling stress for the stiffened plate is found by substituting
the value of k = 3.25 1into the buckling equation and a buckling stress
of 50,400 psi for 758-T6 aluminum alloy is predicted.

CONCLUDING REMARKS

Design charts have been presented which permit the evaluation of
the compressive buckling stress of a long flat rectangular plate with
various deflectional and rotational elastic line supports running
lengthwise of the plate. In order to use the charts in a particular
plate buckling problem, the restraint provided by supporting elements
such as angle and z-sections and full-depth webs like those used in
miltiweb wing construction must be evaluated. The evaluation of the
stiffness of these supports has been discussed, and possible approaches
for obtaining the required stiffnesses are presented. Numerical examples
have been included to illustrate the type of procedures involved in
computing buckling stresses.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June 5, 1953.
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APPENDIX A

DERIVATION OF STABILITY CRITERIA FOR CASES 1, 2, AND 3

Although a set of stability criteria could be derived for the
general case 1involving any number of lines of support either by solving
the plate differentlal equation or by the Rayleigh-Ritz energy method,

a desirable gain in simplicity is achleved by applying the energy method
using Lagrangian multipliers (see ref. 4) to the individual cases. The
latter approach i1s shown in some detail for case 1, and variations in
the method are indicated for cases 2 and 3.

Case 1.- An exact representation of the buckle pattern for case 1
is given by the following series

00
w = sin %? EZ: an sin g%x (A1)
n=1,3,5

where the origin of the coordinate system lies along a side edge of the
plate. The sinusoidal deflection along the plate center line may be
written as

w(x,b) = A sin ’% (A2)

and the slope along the slde edges of the plate may be written as
x,0) =B — sin = A
E( ) ) b ( 3)

Compatibility of equations (Al), (A2), and (A3) requires that

'T
i an sin F - A =0
n=1,3,5

:;: apgn - B =0
1,5

n=1,5,5

> (Ak)
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Using equation (A1) permits the so-called strain energy of bending
stored in the buckled plate to be written as

\7\ \Eb 2 o0 2
Ul = P./ f .a_zw_ + é_z.‘_l. dx cnr = I_) g()"?\b Z an2 _l_._ + n2 _l_
2Jg Jo \x® ° b n=1,3,5 A2 R

(A5)

Using equation (A2) gives the energy stored in the deflectional restraint
as

A
Up = gfo [(x,0)] “ax = 1% A2 (A6)

and using equation (A3) gives the energy stored in the torsional
restraints as

A 2
-5 ow _ 71 \%R2

The so-called external work done by the uniform compressive lcad N at
buckling is

=

AN 2b 2
- ow _N 2b Z 2
Vl —EL L <-a-;)dxdy l&ﬂ 5 an (A8)

The total potential energy may now be written as

T = (Up + Up + Uz = Vq)

or

e 3
N 2(1 n2 >2 Vo2 o2 17D o002
T o= T= >  a ‘_‘“TB - x|+ = p2A% 4 2 T p%B
1 5 ,5 - B 7 'D 2 +°p
(A9)
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2 bB
where B = 1, k = ﬁg_’ and EE— and ZE— are the nondimensional
b 2D %D 2D
deflectional stiffness and rotational stiffness parameters, respectively.
The buckling load is determined by the condition that the potential
energy T' must be a minimum. Since the coefficients A and B depend

upon the Fourier coefficients, a,, the expression to be minimized, is

Q = 7' - Al< :E:. an sin %; - A> - AQ(n ;{; apn - B> (AlO)
=1,3,5

n=l)3)5

where A; and Ay are the Lagrangian multipliers. The potential
energy T' 1is a minimum when

_— 2 T el S e T e = () (All)
dap, OA OB ] WMo
oQ 1 2 \?
S;; = 2an{ig + %r é) - k|- sin %?-- fpn =0 (n=1,375 ...
(Al2)
Q 3 o
= = pp Ay =0 A13)
n Fy A (
oQ b 2
S5 2. -0 (a14)
» Doz Pt
.B—Q'_.': i ansin%—A‘:O (AlS)
aﬁl n=1,3,5
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. aph - B =0 (A16)

MQ n=1,3%,5

Equations (A12), (A13), and (Al4) may be solved for a,, A, and B,
respectively, and these expressions substituted into the compatibility
conditions (eqe. (A15) and (A16)). This substitution results in the
following two simultaneous homogeneous equations:

0 2 E © . nx
A_l_ __1—3 . g sin > . 52_ Z n sin - o
2 2
32 YEE n=1,5,5 (l+£133>2_ . n=1,3,5 (L+I£B>2_ .
(A17)
nsy
A__l 0 n sin 5 . A_2 5 . 0 02 o
2 2 2 = 2
n=1,3%,5 N ne > 2 7b n=l1,3,5 (l 2 )
= 4 0% -k pe — L -k
(B tYP 2D sty P
(A18)

Each of the infinite sums in equations (A1l7) and (A18) are amenable to
exact evaluation. Resolving the infinite series in equations (AlT)
and (A18) into partial fractions yields the following forms:

20 8in2 %‘_ 2 ®© 1 o ® 1

7(2 n

=135 (0, w2 B)‘? . BEnD35m2 - L2 pfkniBs 2, kg2
Bty

o0

n=1,35 1, n2 N, Ak nl35 02 g2 aBfkn=l35 2,4
E + T B - 2

i n2 8pp2 i—_ 1 s 8p62 S 1

T 72
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where

By using equation (6.495) of reference 10, the infinite series can be
written in closed form. Thus,

sin2 XX 2
2 == (l tan ¢ - %-tanh 6)
n=i,3,5 2 \2 bV P
i + n- B - k
B 4

= 2
Z 2 =l(q>ta.nq)+eta.nh6)

2 Bvk
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] n sin nn
2 _ = 1 1
n=1,3,5 <_1_ N ne 8 2 ok 2Byk\cos ¢ cosh 9)
"R

Substituting the closed forms of the infinite series into equations (Al7)
and (A18) and simplifying yleld the following stability criterion:

sin @ sinh 8 5Vic
2
A 02 2 4 g2 6 + 1°B 2/ 1 1
22 cos @ cosh 0 Zb__ \cos ® cosh 6
x2D
0= (A19)
sin ¢ simn 8\ 4k
2/ L _ 1 > ® __ _ 8 + 2B
\cos P cosh © cos @ cosh 6 Wb5
nhD

For glven values of k, B, and 7b/x°D, the velue of W3 /54D  which
causes the determinant to vanish is the desired value. When the side
edges of the plate are simply supported, which is equivalent to

setting ZE— = 0, the criterion reduces to
n
R
‘Vb5 = J[aﬁ (A20)
=D sin ¢ sinh 6
L

cos 9 cosh ©

In reference 11, a stability criterion 1s presented for the compres-
sive buckling of simply supported plates with an arbitrary number of
longitudinal stiffeners. When equation (A7) of reference 11 is applied
to an infinitely long plate and written in the notation of the present
paper it appears as
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1 (~EIeff -k és_ 52) - n2B
Bu bD bt sin @ sinh ©
P ]

cos X4 - cos P cos %% - cosh B8
P

which 1s equivalent to

(A21)
th sin @ sinh 6

cos q cos @ cos 1 cosh 6
P Y

when the stiffness of a stiffener i1s defined by elementary beam theory
and the stresses in the plate and the stiffener are equal (see eq. (2)).
Equation (A21) may be used for plates with simply supported side edges
and with an arbitrary number of longitudinal supports. Equation (A20)
may be obtalned from equation (A21) by substitution of the proper

values of p and q for case 1; that is, p =2 and q = 1.

For complete fixity of the side edges, Z%— = o, the stabllity
n“D
eriterion (eq. (A19)) reduces to
Wk
¥ B

= (A22)
"ED sinh 6

sin @ 1 1 )2
2] ) + cos @ cosh ©

cosh © cos @ 82 sinh 6 ¢2 sin @
8 Q
+
cosh 8 cos @

Solutions of these equations and those to follow are facilitated by a
tabulation of the functions ¢, sin ¢, cos ¢, 6, sinh 6, cosh 6

for appropriate values of the parameters k and B. These data are
provided in table IV.
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Case 2.- An exact representation of the deflection for case 2 is
given by

o]
w = sin %% ZE: an sin oy (A23)

Following the same procedure as for case 1, two critera are obtained,
one for symmetrical buckling and one for an antisymmetrical wave pattern.
Calculations made by considering both modes of buckling indicated that,
except for a very limited combination of values of k and AN (k2 k4

and %/b in the nelghborhood of unity), buckling in a symmetrical mode

requires the highest values of the stiffness perameter bi/nuD to
achieve a given buckling-stress coefficient k. Thus, for most practical
problems, the criterion for symmetrical buckling only need be considered
and is given in determinant form:

sin @ sinh 9 361k sinh @ sin @
. 9fplt2cese P 492 L+ 2cosn® 8 , 18 3({_#8 8 __® )
2 1 3] xisinh 8 1 sin ¢ 1
P 14+cos @ X 1+ cosh® 1 _ 7 L. L
3 cos @ 3 cosh 6 —25 3 cosh 0 2 cos @
=0 (a2h)
sinh § sin ¢ sinh © sin @ Uk
3/ 8 5 __° ® 8 9 L8
3
“Sinheé-coshe Bmw%-cosw —~cosh® =-cos® ,_‘J:’I:’_D

When the plate side edges are simply supported, *he criterion reduces to

WE
3 28
T P (A25)
<*D sin Q@ sinh 8
P ) 9
= - cos @ = ~ cosh ©

e}
Il
N

which is the same as equation (A21) for q =1,
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For complete fixity of the side edges, the criterion is

N3
2
x
P 5 (A26)
8inh € sin @
8 ] @
sin ¢ sinh 6 sinhe_l._coshe_sin(pl--fosq)
P _ 8 - 2 2
1 _ 1. sinh 6 sin @
p -89 Z-cosh?® 2 1+ 2 cosh o 8 so2l+2cmo "0
1 + cosh 8 % - cosh 8 1+ cos @ % - co8 @

Case %.— For the plate with many lines of support running longi-
tudinally (case 3), the stability will not be influenced by the side-

edge conditions. Correspondingly, the following function is used to
describe the deflection surface

00

w = sin ®% E a, cos nry (A27)
N T b

where the origin of coordinates is taken midway between any two lines of
support. Physically the problem thus considered is the buckling of an
infinitely wide plate column of length N restrained against deflection
along continuous longitudinal lines which are equally spaced across the
width of the plate. The stabllity criterion for this case is

bk
2
b3 n“D
Y% = (A28)
n sin @ sinh ©
P 6
1 - cos O l - cosh ©

which is the same as equation (A21) for q =1, p = «.
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APPENDIX B
DERIVATION OF STABILITY CRITERIA FOR CASES 4, 5, AND 6

A direct way of obtaining stability criteria for cases 4, 5, and 6
is by application of the principles of moment distribution to the
stability of plates as described in reference 2. For a long plate
supported along longitudinal lines by nondeflecting supports, the
stabllity criterion 1is obtained by setting the sum of the stiffnesses
of the members entering the joint at a glven support equal to zero.

The plate stiffnesses are denoted in reference 2 by the symbol 8§,

with appropriate superscripts, and the carry over factors are given

by the symbol C, with appropriate superscripts. These symbols and
their superscripts will be used as defined 1n reference 2. The support
torsional stiffnesses o and 7 as defined in this paper have an
absolute value four times as large as S.

Case 4.- For neutral stabllity, the sum of the plate stiffnesses

and the support stiffness at the joint along the plate center line must
equal zero. The sum of these stiffnesses is

%a+2SI=O (B1)

If equation (12) of reference 2 is used, equation (B1) may be written as

ld:+ ESII
i 1
1-¢2 b
SII+L%7

8 sy
2
CLZ - n g (B2)
n“D 1 - C
silp
Y D
2 7o
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Solutions to equation (B2) may be readily obtained by using the tabulated
values of SIIb/D and C given in reference 5.

For the particular case of simple support along the plate side

edges, A 0, equation (B2) reduces to
x

ab 8 glly _
=t 0 (B3)

EY

With complete fixity of the side edges, Zgﬁ = o, equation (B2) reduces to
7

or, making use of equation (13) in reference 2 gives

8 sb
=+ =2 =0 (B4 )
%D =n2 D

With the aid of the tabulated values of SIIb/D and Sb/D given in
reference 5, equations (B3) and (B4) have been plotted as curves giving

2
the buckling-load coefficlent k = KBE as a function of A/b for
x
constant values of ab/ﬂeD. These curves are presented as figures 8
and 9.

Case 5.~ If the stiffnesses of the members meeting along one of
the intermediate lines of support (fig. 2) is summed, the following
equation for neutral stability is obtained

%Q+SI+SIV=O (B5)
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Wwith ST defined by equation (12) of reference 2, equation (B5) may be
written as

L 5
w 2D L asM (86)
72D 1 - 02 2 D
sily
D
P
22D

This stability criterion is readily solved by using the tabulated values
of SIIb/D, SIVb/D, and C given in reference 5.

When E;E is equal to zero, equation (B6) reduces to

ab h(snb SIVb>
Ty 222 ) =0 (BT)
72D 72\ D D
and when 9%— = o, the stability criterion is
7D

v
‘Lb—+i2<3—b+s—3>=o (B8)
1D  n2\D D
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Equations (B7) and (B8) have been plotted in figures 10 and 11 and are

2
presented as curves giving the buckling-load coefficient k = Egs as
s
functions of A/b for constant values of ab/x2D.

Case 6.- For a plate with many longitudinal lines of support
(case 55, the condition that the stiffnesses at a joint must vanish
for neutral stabllity is given by

%‘.'(I + 2SW =0 (B9)
In nondimensional form, equation (B9) may be written as
IV
o, 88 b (810)
72D 2 D

With the ald of the tabulated values of SIIIb/D given in reference 5,

equation (B10) has been plotted as curves giving the buckling-load

2

coefficlent k = H%— as a function of A/b for constant values of
x<D

ab/x°D. These curves are presented in figure 12.
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TABLE I
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VALUES OF DEFLECTIONAL STIFFNESS PARAMETER yb>/x*D FOR CASE 1

q;b}/xh'D for k = -
A/
0 1 2 3 L 5 6
S8imply supported side edges; LA 0
%D
0.4 |-19.89 -17.85 -15.67 =13.32 -10.71 -7.690 | -3.928
.5 | -10.19 -8.526 -6.680 -4.534 -1.827 2.253 | 12.26
6| -5.899 =l 497 -2.861 -.7810 2.376 9.977
T -3.721 -2.517 -1.050 .95k k.558 [18.79
81 -2.504 -1.461 -.1573 1.709 5.309 |23.10
9| =1.773 -.8683 L2748 1.927 5.076 [18.52
1.0 | =1.309 -.5230 4676 1.877 h.h11 | 12.58
1.2 -.7887 -.1916 .5426 1.527 3.052 6.177 | 20.15
1.6 -.3826 -.0197 3999 .9039 1.542 2.411 3.760
1.8 -.2048 -.0034 L3254 . 7062 1.162 1.733 2.495
2.0 -.2%84 0 .2638 .5610 .90%2 | 1.309 1.807
2.5 -.1624 -.0081 .1571 .3353 .5293 LTh27 .9803
3.0 -.1268 -.0192 0937 .2127 .3387 4725 .6157
4.0 -.0956 -.0349 0275 .0917 .1580 .2263 .2970
6.0 -.0T54 -.0488 | -.0215 .0062 .0342 .0626 .091%
8.0 -.0688 -.0542 -.0389 -.0235 -.0080 .0076 .0233
10.0 -.0672 -.0568 -.0471 -.0373 -.027k | -.0L75| =~.0076
Clamped side edges; P 2w
72D
0.4 {-19.895 | -17.85 =15.67 -13.33 -10.73 -7.766 | -k.155
5 -8.541 -6.717 -4.626 -2.092 1.33%8 7.154
6| =5.9169 | -4.5k17| -2.960 -1.079 1.417 5.371 | 14.86
i -2.606 ~1.266 .3898 2.658 6.424 | 16.11
.8 | -2.565 -1.596 -.4663 .9286 2.818 5.828 | 12.499
.9 -1.041 -.0965 1.0513 2.555 h.T77 8.863
1.0 | -1.4087 -.7233 L0654 1.004 2.186 3.810 6.376
1.2 -.4208 .1383 L7765 1.529 2.455 3.667
1.k -.30%9 .1060 559 | 1.070 | 1.659 | 2.358
1.6 -.2555 .0559 .3924 L7602 | 1.168 1.626
2.0 -.4133 -.2262 -.0304 L1754 .3928 6234 .8696
2.5 -.2231 -.0997 .0276 .1593 L2957 RI% S
3.0 -.2263 ~.1416 -.0549 .0338 L1246 L2177
4.0 -.2796 -.2330 -.1859 -.1381 -.0897 | -.0408 .0088
6.0 | -.2604 -.2398 | -.2190 -.1982  -.1771| -.1560| -.1347
8.0 -.2542 -.2426 -.2308 -.2186 -.207h | -.1958| -.1839
10.0 -.2506 -.2438 -.2365 ~-.2289 -.2215 | -.2159| -.2065
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TAELE II
VALUES OF DEFLECTIONAL STIFFNESS PARAMETER ¢b5/14D FOR CASE 2
\ybi/nl"D for k= -
A/
0 1 2 3 4 5 6
Simply supported side edges; A 0
72D
0.4 | -19.826 -17.74k -15.491 -13.029 | -10.234 -6.927 -2.654
.5 | =10.050
6| -5.707 -4.1853 -2.368 -.0123 3.511 10.600
B8l -2.275 -1.1166 L3343 2.345 5.626
1.0 | -1.09% -.2287 .8hobL 2.263 i 4295
1.2 04579 .8196 1.790 3.094 19.46
1.k .1263 .6970 1.377 2.223 4.82
1.6 LT STHT 1.0716 1.656
2.0 -.1279 .1218 .3924 .6882 1.015 1.381 1.796
2.5 0877 .2567 4356 .6261 .8297 1.048
3.0 -.04899 .0624 .1780 .2582 4236 5545 .6915
4.0 .0325 .0964 .1597 .2284 .2968 L3667
6.0 .0085 .0365 .0648 .0933 .1221 .1513
8.0 -.000436 .0152 .0310 .0468 .0628 .0780
10.0 -.01463 -.00Lk66 .00534 L0154 .0254 .0356 0457
70
Clamped silde edges; — =
x2D
0.k | -19.623 ~17.745 -15.493 -13.035 [ -10.248 -6.963 -2.758
.5 -8.348 -6.327 -3.980 -.9679 3.466 12.90
.61 -5.5807 -k .206 -2.418 -.1383 3.178 10.118
.81 -2.1971 -1.173 .2171 2.107 5.371
1.0 | -1.0593 -.3041 . 7094 2.0576
1.2 -.5948 ~.0334 . 70025 1.63%0 3.031
1.4 -.3772 0Lk .5919 1.247 2.122
1.6 -.2637 .0686 4813 .9603 1.550
2.0 -.1602 .0554 3143 -5995 -9209 1.296 1.767
2.5 .0268 .1890 .361h L5464 LTHTS .9689
3.0 .00478 .1159 L2317 .3530 4807 .6158
k.0 -.07566 -.0215 .0399 .1030 L1673 .2334 .3013
6.0 -.06696 -.0430 -.0160 L0113 .0388 .0666 L0947
8.0 -.0513 -.0358 -.0207 - .00540 .00996 L0243
10.0 -.06336 -.0544 -.0h51 -.0353 -.0257 -.0159 -.00619
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TABLE IV

VALUES OF FUNCTIONS APPEARING IN THE STABILITY CRITERIA

A/b

o) sin @ cos @ 8 gilnh © cosh @
k=1
0.4 | 6.08371 |219.331 219.33 9.2929 | 5430.37 5430 .37
5| h.4h291 | 42.5051 42.517 7.6953 | 1099.01 1099.01
.61 3.31151 | 13.6951 13.731 6.6231 376.14 376.14
.71 2.45821 5.79911 5.8846 | 5.8516 173.89 173.90
8] 1.75621 2.80881 2.9815 | 6.2686 97.070 97.075
.31 1.10381 1.34201 1.6736 | 4.8115 61.454 61.462
1.0]0 0 1.0 4.4 29 k2.505 ko .517
1.2]1.1708 .92106 .38041 | 3.8831 4. 277 24 .298
1.4 ] 1.41092 .98853 15102 | 3.4764 16.156 16.187
1.6 | 1.5209 .99875 .04987 | 3.1660 11.835 11.877
2.0}1.5708 1.0 0 2.7207 | 7.5626 7.6277
2.51 1.5391 .99950 .03169 | 2.3510 5.200k4 5.2957
3.0 | 1.4810 .99597 .08967 | 2.094k4 3.9987 4.1218
4.0 | 1.3604 97795 .20885 | 1.7562 2.8089 2.9815
6.0 1.1708 .92106 38941 | 1.3853 1.8729 2.1231
8.0 | 1.0390 .86190 .50708 | 1.1781 1.4702 1.7780
10.0| .9425 .80903 587771 1.0419 1.2409 1.5937
k=2
0.4{5.17601 | 88.4851 88.491 9.8275 | 9268.3%6 9268.36
5 3.40041 | 14.9711 15.007 8.2094 { 1837.67 1837.67
.61 2.03781 377171 3.9020 | 7.1189 617.54 617 54
7] Bh992i L465251]  1.1029 | 6.3310 280 .86 280.86
81 1.4233 .98914 14696 { 5.7331 154 .46 154 .46
.91 1.8232 .96831 -.24973 1 5.2619 96.422 96.427
1.0} 2.0219 .89996 -.43595 ] 4.8813 65.897 65.905
1.2] 2.1858 .81677 -.57696 | 4.2995 36.825 36.838
1.4 2.2213 79577 -.605581 3.8737 24.050 24 . 071
1.6 2.2064 .804 71 -.59366 | 3.5467 17.335 17.364
2.0 2.1240 .85084 -.52541 | 3.0735 10.786 10.832
2.5| 2.0010 .90888 -.41705| 2.6762 7.2305 7.2993
3.0 1.8857 -95082 -.20972| 2.5977 5.453h4 5. Sl
4.0 1.6949 .99231 -.12379 | 2.0264 3.7275 3.8593
6.0 1.4325 .99045 13786 ] 1.6126 2.4082 2.6076
8.0 1.2612 .95246 30467 1.3780 1.8574 2.1095
10.0} 1.1389 .90817 41859 | 1.2225 1.5506 1.8451
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TABLE IV

VALUES OF FUNCTIONS APPEARING IN THE STABILITY CRITERIA - Continued

A/b P sin @ cos @ 9 sinh 6 cosh 6
k=3
0.4 | 4.353%01 | 38.8501 | 38.862 10.219 13720 .4 13720 .4
.51 2.29981 | 4.93591 | 5.0362 8.5831 2670.3% 2670.3
.6]1.0371 .86093 .50872 74771 883.56 883.56
.71 2.0685 .87868 | -.477h1 6.6756 396.42 396.42
.81 2.4387 LBh6h3 | -.T76297 6.0654 215.35 215.35
.9 | 2.6095 50733 | -.8617h 5.5838 133.04 133.04
1.0 | 2.6879 43829 | -.89883 5.1927 89.975 89.981
1.2 2.7188 41031 | -.91195 4.5934 49.410 49.421
1.4 | 2.6786 L4663 | -.89h72 4.1528 31.798 31.814
1.6 | 2.6132 50415 | -.86362 3.8131 22.634 22.657
2.0 | 2.4658 .62551 | -.78021 3.3188 13.796 1%.832
2.5 | 2.2932 .75022 | -.66119 2.9012 9.0705 9.1255
3.0 | 2.1451 .83957 | -.54325 2.6067 6.7402 6.8140
h.0]1.9122 94229 | -.33481 2.2115 4.5099 4.6195
6.0 | 1.6047 99943 | -.03390 1.7673 2.8421 3.0129
8.0 | 1.4081 .98679 .16198 1.5136 2.1615 2.3816
10.0 | 1.2692 .95486 .29666 1.3447 1.7882 2.0488
k =L
0.4 | 3.51241 | 16.7501 |16.779 10.537 18864 .3 18864 .3
510 0 1.0 8.8858 361k .34 3614 .34
6] 2.3416 L7735 | -.69671 T.77662| 1179.76 1179.76
.71 2.8385 29847 | -.954k42 6.9528 523.04 523 .04
.81 3%.0418 .09963 | -.99502 6.3321 281.17 281.17
.91 3.1221 .01949 | -.99980 5.8410 172.06 172.06
1.0 | 3.1416 0 ~1.0 5.4414 115.381 115.385
1.2 3.0976 04398 | -.99902 4 .8273 62.433 62.441
1.4 | 3.0106 .13062 | -.99143 4.3733 39.690 39.703
1.6] 2.9123 .22729 | -.97383 4.0240 27.953 27.971
2.0 | 2.7207 40857 | -.91272 3.5124 16.750 16.779
2.5 | 2.5133 58776 | -.80903 3.0781 10.836 10.882
3.0 | 2.3416 STLT35 | -.69671 2.7706 7.9528 8.0154
h.0| 2.078 8711 | -.48573 2.3562 5.2280 5.3228
6.0 | 1.7366 .98629 | -.16505 1.8879 3.2270 3.5784
8.0 | 1.5209 .99876 049876 | 1.6191 2.4252 2.6233
10.0 | 1.3694 .97979 .20004 1.4397 1.9912 2.2282
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TABLE IV

VALUES OF FUNCTIONS APPEARING IN THE STABILITY CRITERIA - Concluded

A/b P sin @ cos @ 0 sinh 8 cosh ©
=5
0.4 ] 2.55191 | 6.37681 |6.4547 10.810 | 24768.18 24768.18
51 2.1587 .83210 |-.55462 | 9.14k2 | 4680.05 4680.05
.6 | 3.060k4 .08110 |-.99670 8.0123 | 1508.94 1508.94
71 3.3742 | -.23051 |{-.97306 7.1881 661.798 661.798
.81 3.4879 | -.33942 | -.94062 6.5580 352.43 352.43
.91 3.5123 | -.36227 |-.93206 6.0585 215.87 213.87
1.0 | 3.4928 | -.34403 |-.93895 5.651k% 142.34 142.35
1.2 3.3967 | -.25235 |-.96763 5.024k 76.037 76 .044
1.4 | 3.2754 | -.13341 {-.99105 4 .5606 47.815 47.826
1.6 3.152% | -.01081 [-.999932| L4.2010 33.369 33.384
2.0 | 2.9270 .21295 | -.97706 3.6745 19.702 19.727
2.5 | 2.6923 L3433 | -.90075 3.2260 12.570 12.609
3.0 | 2.5019 .59695 |-.80228 2.907h 9.1272 9.1819
L.0o| 2.2137 .80036 |-.59952 2.4767 5.9090 5.9930
6.0 { 1.8450 .96264 | -.27078 1.9881 3.5823 3.7193
8.0{1.6138 .99908 | -.042990 | 1.7067 2.6646 2.8461
10.0 | 1.4520 .99259 | .11852 1.5184 2.1729 2.3920
k=6
0.4 11.11641 | 1.36321 |1.6906 11.051 | 31542.81 31542.81
.512.9787 .16217 |-.98676 9.3718 | 5872.07 5872.07
.6]13.5885 | -.43217 |-.90178 8.2285 | 1873.12 1873.12
.7 3.7940 | -.60709 |-.79461 7.3945 813.515 813.515
.8|3.8468 | -.64818 |-.76147 6.7558 429.518 429.518
9| 3.8311 | -.63615 |-.77155 6.2u87 258.67 258.67
1.0 3.7823 | -.59776 |~-.80167 5.8348 171.00 171.00
1.213.6459 | -.48319 |-.87550 5.1962 90.291 90.296
1.4 [ 3.4975 | -.34844 |-.93732 4 .7227 56.232 56.241
1.6[3.3548 | -.21159 [-.97734 4.3549 38.923 38.936
2.0 | 3.1017 .039882] ~.99920 3.8151 22.680 22,702
2.5 | 2.8445 .29274 |-.95619 3.3540 14.291 14.326
3.0 | 2.6385 L8214 {-.87609 3.0257 10.280 10.329
4.0 | 2.3296 .72566 |-.68805 2.5808 6.5660 6.6417
6.011.9378 .93341 [-.35882 2.0745 3.9175 h.o431
8.0 [1.6934 .9924k9 |-.12230 1.7822 2.8873 3.0556
10.0 | 1.5228 .99885 | .04k7978| 1.5863 2.3405 2.5452
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Figure 2.~ Six cases for which stability criteria are presented.
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Figure 13.- Functions appearing in expression for effective flexural
stiffness of stiffeners attached to one side of plate (from ref. 6).
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\\\+ﬁnge line

(a) Loads on web. (b) Idealization of web.

X
(c) Deformed shape of idealized web.

Figure 1k4.- Loads and deformations used in calculating the effective
stiffness of channel-type full-depth webs.
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