1,482 research outputs found

    Infrared Observations of the Helix Planetary Nebula

    Get PDF
    We have mapped the Helix (NGC 7293) planetary nebula (PN) with the IRAC instrument on the Spitzer Space Telescope. The Helix is one of the closest bright PNs and therefore provides an opportunity to resolve the small-scale structure in the nebula. The emission from this PN in the 5.8 and 8 μm IRAC bands is dominated by the pure rotational lines of molecular hydrogen, with a smaller contribution from forbidden line emission such as [Ar III] in the ionized region. The IRAC images resolve the "cometary knots," which have been previously studied in this PN. The "tails" of the knots and the radial rays extending into the outer regions of the PN are seen in emission in the IRAC bands. IRS spectra on the main ring and the emission in the IRAC bands are consistent with shock-excited H_2 models, with a small (~10%) component from photodissociation regions. In the northeast arc, the H_2 emission is located in a shell outside the Hα emission

    High-dose rate brachytherapy (HDRB) for primary or recurrent cancer in the vagina

    Get PDF
    PURPOSE: The purpose of this study was to evaluate the efficacy of HDR brachytherapy for primary or recurrent vaginal cancer. METHODS: Between the years 2000 to 2006, 18 patients with primary or recurrent vaginal cancer were treated with brachytherapy (HDRB). Six patients had primary vaginal cancer (stage II to IVA) while 12 were treated for isolated vaginal recurrence (primary cervix = 4, vulva = 1 and endometrium = 7). Five patients had previous pelvic radiation therapy. All except one patient received external beam radiation therapy to a median dose of 45 Gy (range 31.2–55.8 Gy). The HDRB was intracavitary using a vaginal cylinder in 5 patients and interstitial using a modified Syed-Nesblett template in 13 patients. The dose of interstitial brachytherapy was 18.75 Gy in 5 fractions delivered twice daily. The median follow-up was 18 months (range 6–66 months). RESULTS: Complete response (CR) was achieved in all but one patient (94%). Of these 17 patients achieving a CR, 1 had local recurrence and 3 had systemic recurrence at a median time of 6 months (range 6–22 months). The 2-year actuarial local control and cause-specific survival for the entire group were 88% and 82.5%, respectively. In subset analysis, the crude local control was 100% for primary vaginal cancer, 100% for the group with recurrence without any prior radiation and 67% for group with recurrence and prior radiation therapy. Two patients had late grade 3 or higher morbidity (rectovaginal fistula in one patient and chronic vaginal ulcer resulting in bleeding in one patient). Both these patients had prior radiation therapy. CONCLUSION: Our small series suggests that HDRB is efficacious for primary or recurrent vaginal cancer. Patients treated with primary disease and those with recurrent disease without prior irradiation have the greatest benefit from HDRB in this setting. The salvage rate for patients with prior radiation therapy is lower with a higher risk of significant complications. Additional patients and follow-up are ongoing to determine the long-term efficacy of this approach

    Development in the Gulf of Maine: Avoiding Geohazards and Embracing Opportunities

    Get PDF
    Mapping for marine-spatial planning is crucial if Maine is to safely develop its offshore resources, espe­cially wind and tidal energy. The authors focus on shallow natural gas (methane) deposits, an important and widespread geohazard in Maine’s seafloor. They describe the origin, occur­rence, and identification of natural gas in Maine’s seafloor; explain the hazards associated with these deposits and how to map them; and discuss what Maine can learn from European nations that have already developed their offshore wind resources. Because the U.S. gives states a central role in coastal management, Maine has the chance to be proactive in delineating coastal resources and demarcating potential seafloor hazards

    Molecular analysis of endocrine disruption in hornyhead turbot at wastewater outfalls in southern california using a second generation multi-species microarray.

    Get PDF
    Sentinel fish hornyhead turbot (Pleuronichthysverticalis) captured near wastewater outfalls are used for monitoring exposure to industrial and agricultural chemicals of ~ 20 million people living in coastal Southern California. Although analyses of hormones in blood and organ morphology and histology are useful for assessing contaminant exposure, there is a need for quantitative and sensitive molecular measurements, since contaminants of emerging concern are known to produce subtle effects. We developed a second generation multi-species microarray with expanded content and sensitivity to investigate endocrine disruption in turbot captured near wastewater outfalls in San Diego, Orange County and Los Angeles California. Analysis of expression of genes involved in hormone [e.g., estrogen, androgen, thyroid] responses and xenobiotic metabolism in turbot livers was correlated with a series of phenotypic end points. Molecular analyses of turbot livers uncovered altered expression of vitellogenin and zona pellucida protein, indicating exposure to one or more estrogenic chemicals, as well as, alterations in cytochrome P450 (CYP) 1A, CYP3A and glutathione S-transferase-α indicating induction of the detoxification response. Molecular responses indicative of exposure to endocrine disruptors were observed in field-caught hornyhead turbot captured in Southern California demonstrating the utility of molecular methods for monitoring environmental chemicals in wastewater outfalls. Moreover, this approach can be adapted to monitor other sites for contaminants of emerging concern in other fish species for which there are few available gene sequences

    Sleep to Reduce Incident Depression Effectively (STRIDE): study protocol for a randomized controlled trial comparing stepped-care cognitive-behavioral therapy for insomnia versus sleep education control to prevent major depression

    Get PDF
    BACKGROUND: Prevention of major depressive disorder (MDD) is a public health priority. Strategies targeting individuals at elevated risk for MDD may guide effective preventive care. Insomnia is a reliable precursor to depression, preceding half of all incident and relapse cases. Thus, insomnia may serve as a useful entry point for preventing MDD. Cognitive-behavioral therapy for insomnia (CBT-I) is recommended as the first-line treatment for insomnia, but widespread implementation is limited by a shortage of trained specialists. Innovative stepped-care approaches rooted in primary care can increase access to CBT-I and reduce rates of MDD. METHODS/DESIGN: We propose a large-scale stepped-care clinical trial in the primary care setting that utilizes a sequential, multiple assignment, randomized trial (SMART) design to determine the effectiveness of dCBT-I alone and in combination with clinician-led CBT-I for insomnia and the prevention of MDD incidence and relapse. Specifically, our care model uses digital CBT-I (dCBT-I) as a first-line intervention to increase care access and reduce the need for specialist resources. Our proposal also adds clinician-led CBT-I for patients who do not remit with first-line intervention and need a more personalized approach from specialty care. We will evaluate negative repetitive thinking as a potential treatment mechanism by which dCBT-I and CBT-I benefit insomnia and depression outcomes. DISCUSSION: This project will test a highly scalable model of sleep care in a large primary care system to determine the potential for wide dissemination and implementation to address the high volume of population need for safe and effective insomnia treatment and associated prevention of depression. TRIAL REGISTRATION: ClinicalTrials.gov NCT03322774. Registered on October 26, 2017

    Shallow stratigraphic control on pockmark distribution in north temperate estuaries

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 329-331 (2012): 34-45, doi:10.1016/j.margeo.2012.09.006.Pockmark fields occur throughout northern North American temperate estuaries despite the absence of extensive thermogenic hydrocarbon deposits typically associated with pockmarks. In such settings, the origins of the gas and triggering mechanism(s) responsible for pockmark formation are not obvious. Nor is it known why pockmarks proliferate in this region but do not occur south of the glacial terminus in eastern North America. This paper tests two hypotheses addressing these knowledge gaps: 1) the region's unique sea-level history provided a terrestrial deposit that sourced the gas responsible for pockmark formation; and 2) the region's physiography controls pockmarks distribution. This study integrates over 2500 km of high-resolution swath bathymetry, Chirp seismic reflection profiles and vibracore data acquired in three estuarine pockmark fields in the Gulf of Maine and Bay of Fundy. Vibracores sampled a hydric paleosol lacking the organic-rich upper horizons, indicating that an organic-rich terrestrial deposit was eroded prior to pockmark formation. This observation suggests that the gas, which is presumably responsible for the formation of the pockmarks, originated in Holocene estuarine sediments (loss on ignition 3.5–10%), not terrestrial deposits that were subsequently drowned and buried by mud. The 7470 pockmarks identified in this study are non-randomly clustered. Pockmark size and distribution relate to Holocene sediment thickness (r2 = 0.60), basin morphology and glacial deposits. The irregular underlying topography that dictates Holocene sediment thickness may ultimately play a more important role in temperate estuarine pockmark distribution than drowned terrestrial deposits. These results give insight into the conditions necessary for pockmark formation in nearshore coastal environments.Graduate support for Brothers came from a Maine Economic Improvement Fund Dissertation Fellowship

    Biomarkers for cystic fibrosis drug development

    Get PDF
    To provide a review of the status of biomarkers in cystic fibrosis drug development, including regulatory definitions and considerations, a summary of biomarkers in current use with supportive data, current gaps, and future needs

    WISE/NEOWISE Preliminary Analysis and Highlights of the 67P/Churyumov-Gerasimenko Near Nucleus Environs

    Get PDF
    On January 18-19 and June 28-29 of 2010, the Wide-field Infrared Survey Explorer (WISE) spacecraft imaged the Rosetta mission target, comet 67P/Churyumov-Gerasimenko. We present a preliminary analysis of the images, which provide a characterization of the dust environment at heliocentric distances similar to those planned for the initial spacecraft encounter, but on the outbound leg of its orbit rather than the inbound. Broad-band photometry yields low levels of CO2 production at a comet heliocentric distance of 3.32 AU and no detectable production at 4.18 AU. We find that at these heliocentric distances, large dust grains with mean grain diameters on the order of a millimeter or greater dominate the coma and evolve to populate the tail. This is further supported by broad-band photometry centered on the nucleus, which yield an estimated differential dust particle size distribution with a power law relation that is considerably shallower than average. We set a 3-sigma upper limit constraint on the albedo of the large-grain dust at <= 0.12. Our best estimate of the nucleus radius (1.82 +/- 0.20 km) and albedo (0.04 +/- 0.01) are in agreement with measurements previously reported in the literature
    corecore