29 research outputs found

    Uveal Melanoma, Angiogenesis and Immunotherapy, Is There Any Hope?

    Get PDF
    Uveal melanoma is considered a rare disease but it is the most common intraocular malignancy in adults. Local treatments are effective, but the systemic recurrence rate is unacceptably high. Moreover, once metastasis have developed the prognosis is poor, with a 5-year survival rate of less than 5%, and systemic therapies, including immunotherapy, have rendered poor results. The tumour biology is complex, but angiogenesis is a highly important pathway in these tumours. Vasculogenic mimicry, the ability of melanomas to generate vascular channels independently of endothelial cells, could play an important role, but no effective therapy targeting this process has been developed so far. Angiogenesis modulates the tumour microenvironment of melanomas, and a close interplay is established between them. Therefore, combining immune strategies with drugs targeting angiogenesis offers a new therapeutic paradigm. In preclinical studies, these approaches effectively target these tumours, and a phase I clinical study has shown encouraging results in cutaneous melanomas. In this review, we will discuss the importance of angiogenesis in uveal melanoma, with a special focus on vasculogenic mimicry, and describe the interplay between angiogenesis and the tumour microenvironment. In addition, we will suggest future therapeutic approaches based on these observations and mention ways in which to potentially enhance current treatments

    Nitrate pollution of groundwater, all right... but nothing else?

    Get PDF
    Contamination from agricultural sources and, in particular, nitrate pollution, is one of the main concerns in groundwater management. However, this type of pollution entails the entrance of other substances into the aquifer, as well as it may promote other processes. In this study, we deal with hydrochemical and isotopic analysis of groundwater samples from four distinct zones in Catalonia (NE Spain), which include different lithological units, to investigate the influence of manure fertilization on the overall hydrochemical composition of groundwater. Results indicate that high nitrate concentrations, resulting from intense manure application, homogenize the contents of the major dissolved ions (i.e.; Cl-, SO42-, Ca2+, Na+, K+, and Mg2+). Moreover, positive linear relationships between nitrate and some ions are found indicating the magnitude of the fertilization impact on groundwater hydrochemistry. Nevertheless, the increasing concentration of specific ions is not only attributed to the manure input, but to the enhancing effect of manure and slurry upon the biogeochemical processes that control water-rock interactions. Such results raise awareness that such processes should be evaluated in advance in order to assess adequate groundwater resources assessmen

    Protocol for regional implementation of collaborative lung function testing

    Get PDF
    The potential of forced spirometry (FS) testing for diagnosis, monitoring and management of chronic respiratory patients is well established1-3 such that FS is a pivotal test in both respiratory medicine and primary care. Moreover, it also shows potential in the informal care scenario: that is, in pharmacy offices for case-finding purposes4,5 and for self-management in selected patients.6,7 We acknowledge that well-designed studies8 have failed to show practical benefits of FS for asthma and COPD diagnosis and management in primary care. However, it has been demonstrated that historical limitations for extensive use of FS in primary care, because of suboptimal quality of testing, can be overcome by offline remote support by specialised professionals.9,10 Large-scale deployment of this type of setting has generated evidence of cost-effectiveness.

    Uveal Melanoma: A European Network to Face the Many Challenges of a Rare Cancer

    Get PDF
    Uveal melanoma (UM) is the most frequent primary ocular cancer in adults, accounting for 5% of all melanomas. Despite effective treatments for the primary tumour, up to 50% of UM patients will develop metastasis, leading to a very poor prognosis and a median overall survival of 6 to 12 months, with no major improvements in the last 30 years. There is no standard oncological treatment available for metastatic UM patients, and BRAF/MEK and immune checkpoint inhibitors show disappointing results when compared to cutaneous melanoma (CM). Recent advances in biology, however, identified specific gene and chromosome alterations, potentially permitting an actively tailored surveillance strategy, and dedicated clinical studies. Being a rare cancer, UM patients have to overcome issues such as identifying referral centres, having access to information, and partnering with oncologists for specific management strategies and research priorities. Here, we describe how the EUropean Rare Adult solid CAacer Network (EURACAN) will help in addressing these challenges and accelerating international collaborations to enhance the development of innovative treatments in UM

    DNA Methylomes Reveal Biological Networks Involved in Human Eye Development, Functions and Associated Disorders

    Get PDF
    This work provides a comprehensive CpG methylation landscape of the different layers of the human eye that unveils the gene networks associated with their biological functions and how these are disrupted in common visual disorders. Herein, we firstly determined the role of CpG methylation in the regulation of ocular tissue-specification and described hypermethylation of retinal transcription factors (i.e., PAX6, RAX, SIX6) in a tissue-dependent manner. Second, we have characterized the DNA methylome of visual disorders linked to internal and external environmental factors. Main conclusions allow certifying that crucial pathways related to Wnt-MAPK signaling pathways or neuroinflammation are epigenetically controlled in the fibrotic disorders involved in retinal detachment, but results also reinforced the contribution of neurovascularization (ETS1, HES5, PRDM16) in diabetic retinopathy. Finally, we had studied the methylome in the most frequent intraocular tumors in adults and children (uveal melanoma and retinoblastoma, respectively). We observed that hypermethylation of tumor suppressor genes is a frequent event in ocular tumors, but also unmethylation is associated with tumorogenesis. Interestingly, unmethylation of the proto-oncogen RAB31 was a predictor of metastasis risk in uveal melanoma. Loss of methylation of the oncogenic mir-17-92 cluster was detected in primary tissues but also in blood from patients.The research leading to these results was supported by European Research Council Advanced Grant EPINORC, RecerCaixa Foundation, Federación Española de Enfermedades Raras (FEDER), Federación Española de Enfermedades Neuromusculares (ASEM), Fundación Isabel Gemio, COST CM1406, Instituto de Salud Carlos III (PI/00816) and Health and Sciences Departments of the Catalan Government (Generalitat de Catalunya). M.E. is an Institució Catalana de Recerca i Estudis Avançats (ICREA) Research Professor. We thank the staff of the Biobank Facility at the Bellvitge Biomedical Research Institute (IDIBELL), Spanish National Cancer Research Center (CNIO), Institute of Rare Diseases Research (BioNER-ISCIII), Vall d’Hebron Research Institute (VHIR) and Banc de Sang i Teixits (BST) of the Catalan Ministry of Health. We also thank Dr. Mercedes Hurtado (Department of Ophthalmology, University and Polytechnic Hospital La Fe) and Dr. Dolores Pinazo (Department of Ophthalmology, Dr. Peset University Hospital) for obtaining samples from glaucomatous patients. We thank the patients and their families.S

    DNA methylomes reveal biological networks involved in human eye development, functions and associated disorders

    Get PDF
    This work provides a comprehensive CpG methylation landscape of the different layers of the human eye that unveils the gene networks associated with their biological functions and how these are disrupted in common visual disorders. Herein, we firstly determined the role of CpG methylation in the regulation of ocular tissue-specification and described hypermethylation of retinal transcription factors (i.e., PAX6, RAX, SIX6) in a tissue-dependent manner. Second, we have characterized the DNA methylome of visual disorders linked to internal and external environmental factors. Main conclusions allow certifying that crucial pathways related to Wnt-MAPK signaling pathways or neuroinflammation are epigenetically controlled in the fibrotic disorders involved in retinal detachment, but results also reinforced the contribution of neurovascularization (ETS1, HES5, PRDM16) in diabetic retinopathy. Finally, we had studied the methylome in the most frequent intraocular tumors in adults and children (uveal melanoma and retinoblastoma, respectively). We observed that hypermethylation of tumor suppressor genes is a frequent event in ocular tumors, but also unmethylation is associated with tumorogenesis. Interestingly, unmethylation of the proto-oncogen RAB31 was a predictor of metastasis risk in uveal melanoma. Loss of methylation of the oncogenic mir-17-92 cluster was detected in primary tissues but also in blood from patients

    Structure versus function: correlation between outer retinal and choroidal thicknesses measured by swept-source OCT with multifocal electroretinography and visual acuity

    No full text
    Abstract Background To correlate retina-choroidal anatomy as assessed via swept-source OCT (SS-OCT) with retinal function as determined by best-corrected visual acuity (BCVA) and multifocal electroretinogram (mfERG). Methods Thirty-three eyes from 33 patients including 16 with neovascular AMD (nvAMD) and 17 controls were included. Patients were included in the present study after a complete ophthalmologic examination, including BCVA, slit-lamp study, intraocular pressure measurement, dilated fundus examination after tropicamide instillation, SD-OCT, SS-OCT, fundus photographs and mfERG. Age, sex, BCVA, number of anti-VEGF intravitreal injections in the nvAMD group, were recollected. Outer retinal and choroidal thickness were determined at the fovea and 500 μm temporal, superior, nasal and inferior. First-order response from mfERG was collected. P1 amplitude was recorded in R1, R2 and the average of R1 + R2. The measurements recollected from the SS-OCT, mfERG and BCVA were compared. Results Better BCVA was found with thicker outer retina foveal thickness (r = 0.349; P = 0.047), with thicker subfoveal choroidal thickness (r = 0.443; P = 0.010), and with higher amplitude in P1 at R1 (r = 0.346; P = 0.037). Outer retina foveal thickness did not correlate with P1 amplitude at R1 (r = 0.072; P = 0.692), R2 (r = 0.265; P = 0.137) either with the average P1 amplitude at R1 + R2 (r = 0.253; P = 0.156). A thicker subfoveal choroidal thickness was related with higher amplitude in P1 at R1 (r = 0.383; P = 0.028), R2 (r = 0.409; P = 0.018) and the average of R1 + R2 (r = 0.419; P = 0.015). Conclusions Choroidal thickness demonstrated a positive correlation with retinal function in the sample studied, so a thicker choroid is related to a better retinal function measured with mfERG and BCVA

    New ammonia lyases and amine transaminases : dtandardization of production process and preparation of immobilized biocatalysts

    No full text
    Background: New enzymes for biotransformations can be obtained by different approaches including directed mutagenesis and in vitro evolution. These mutants have to be efficiently produced for laboratory research on bioreactions as well as for process development. In the framework of a European ERA-IB project, two different types of enzymes (ammonia lyases and aminotransferases) have been selected as biocatalysts for the synthesis of industrially relevant amines. New mutant enzymes have been obtained: a) aspartases able to recognize β-amino acids; b) ω-transaminases with improved activity. The objectives are to find out a common operational strategy applicable to different mutants expressed in E. coli with the same initial genetic background, the development of an integrated process for production and the preparation of stable useful biocatalysts. Results: Mutant enzymes were expressed in E. coli BL21 under the control of isopropylthiogalactoside (IPTG) inducible promoter. The microorganisms were grown in a formulated defined medium and a high-cell density culture process was set up. Fed-batch operation at constant specific growth rate, employing an exponential addition profile allowed high biomass concentrations. The same operational strategy was applied for different mutants of both aspartase and transaminase enzymes, and the results have shown a common area of satisfactory operation for maximum production at low inducer concentration, around 2 μmol IPTG/g DCW. The operational strategy was validated with new mutants and high-cell density cultures were performed for efficient production. Suitable biocatalysts were prepared after recovery of the enzymes. The obtained aspartase was immobilized by covalent attachment on MANA-agarose, while ω-transaminase biocatalysts were prepared by entrapping whole cells and partially purified enzyme onto Lentikats (polyvinyl alcohol gel lens-shaped particles). Conclusions: The possibility of expressing different mutant enzymes under similar operation conditions has been demonstrated. The process was standardized for production of new aspartases with β-amino acid selectivity and new ω-transaminases with improved substrate acceptance. A whole process including production, cell disruption and partial purification was set up. The partially purified enzymes were immobilized and employed as stable biocatalysts in the synthesis of chiral amines

    Nitrate pollution of groundwater, all right... but nothing else?

    No full text
    Contamination from agricultural sources and, in particular, nitrate pollution, is one of the main concerns in groundwater management. However, this type of pollution entails the entrance of other substances into the aquifer, as well as it may promote other processes. In this study, we deal with hydrochemical and isotopic analysis of groundwater samples from four distinct zones in Catalonia (NE Spain), which include different lithological units, to investigate the influence of manure fertilization on the overall hydrochemical composition of groundwater. Results indicate that high nitrate concentrations, resulting from intense manure application, homogenize the contents of the major dissolved ions (i.e.; Cl-, SO42-, Ca2+, Na+, K+, and Mg2+). Moreover, positive linear relationships between nitrate and some ions are found indicating the magnitude of the fertilization impact on groundwater hydrochemistry. Nevertheless, the increasing concentration of specific ions is not only attributed to the manure input, but to the enhancing effect of manure and slurry upon the biogeochemical processes that control water-rock interactions. Such results raise awareness that such processes should be evaluated in advance in order to assess adequate groundwater resources assessmen
    corecore