185 research outputs found

    Numerical 3+1 general relativistic magnetohydrodynamics: a local characteristic approach

    Full text link
    We present a general procedure to solve numerically the general relativistic magnetohydrodynamics (GRMHD) equations within the framework of the 3+1 formalism. The work reported here extends our previous investigation in general relativistic hydrodynamics (Banyuls et al. 1997) where magnetic fields were not considered. The GRMHD equations are written in conservative form to exploit their hyperbolic character in the solution procedure. All theoretical ingredients necessary to build up high-resolution shock-capturing schemes based on the solution of local Riemann problems (i.e. Godunov-type schemes) are described. In particular, we use a renormalized set of regular eigenvectors of the flux Jacobians of the relativistic magnetohydrodynamics equations. In addition, the paper describes a procedure based on the equivalence principle of general relativity that allows the use of Riemann solvers designed for special relativistic magnetohydrodynamics in GRMHD. Our formulation and numerical methodology are assessed by performing various test simulations recently considered by different authors. These include magnetized shock tubes, spherical accretion onto a Schwarzschild black hole, equatorial accretion onto a Kerr black hole, and magnetized thick accretion disks around a black hole prone to the magnetorotational instability.Comment: 18 pages, 8 figures, submitted to Ap

    Analysis of the human interaction with a wearable lower-limb exoskeleton

    Get PDF
    The design of a wearable robotic exoskeleton needs to consider the interaction, either physical or cognitive, between the human user and the robotic device. This paper presents a method to analyse the interaction between the human user and a unilateral, wearable lower-limb exoskeleton. The lower-limb exoskeleton function was to compensate for muscle weakness around the knee joint. It is shown that the cognitive interaction is bidirectional; on the one hand, the robot gathered information from the sensors in order to detect human actions, such as the gait phases, but the subjects also modified their gait patterns to obtain the desired responses from the exoskeleton. The results of the two-phase evaluation of learning with healthy subjects and experiments with a patient case are presented, regarding the analysis of the interaction, assessed in terms of kinematics, kinetics and/or muscle recruitment. Human-driven response of the exoskeleton after training revealed the improvements in the use of the device, while particular modifications of motion patterns were observed in healthy subjects. Also, endurance (mechanical) tests provided criteria to perform experiments with one post-polio patient. The results with the post-polio patient demonstrate the feasibility of providing gait compensation by means of the presented wearable exoskeleton, designed with a testing procedure that involves the human users to assess the human-robot interaction

    Mitos, verdades, leyendas e historias sobre el ajo y sus propiedades benéficas para la salud

    Get PDF
    El ajo es una de las especies sobre la que más se ha escrito desde los tiempos remotos. Hay relatos de su historia y de sus propiedades benéficas que tienen más de 6.000 años de antigüedad. Muchas de estas han sido comprobadas y sustentadas científicamente con el paso del tiempo, y otras pertenecen al mundo de los mitos (historias ficticias), o de las leyendas (suceso tradicional o maravilloso que poco tiene que ver con lo histórico o verdadero).EEA La ConsultaFil: Burba, Jose Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; ArgentinaFil: Cavagnaro, Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; ArgentinaFil: Pons, Alberto Jose. Administración Nacional de Laboratorios e Institutos de Salud; Argentin

    An Adaptable Human-Like Gait Pattern Generator Derived From a Lower Limb Exoskeleton

    Get PDF
    Walking rehabilitation processes include many repetitions of the same physical movements in order to replicate, as close as possible, the normal gait trajectories, and kinematics of all leg joints. In these conventional therapies, the therapist′s ability to discover patient′s limitations—and gradually reduce them—is key to the success of the therapy. Lower-limb robotic exoskeletons have strong deficiencies in this respect as compared to an experienced therapist. Most of the currently available robotic solutions are not able to properly adapt their trajectories to the biomechanical limitations of the patient. With this in mind, much research and development is still required in order to improve artificial human-like walking patterns sufficiently for valuable clinical use. The work herein reported develops and presents a method to acquire and saliently analyze subject-specific gait data while the subject dons a passive lower-limb exoskeleton. Furthermore, the method can generate adjustable, yet subject-specific, kinematic gait trajectories useful in programming controllers for future robotic rehabilitation protocols. A human-user study with ten healthy subjects provides the experimental setup to validate the proposed method. The experimental protocol consists in capturing kinematic data while subjects walk, with the donned H2 lower-limb exoskeleton, across three experimental conditions: walking with three different pre-determined step lengths marked on a lane. The captured ankle trajectories in the sagittal plane were found by normalizing all trials of each test from one heel strike to the next heel strike independent of the specific gait features of each individual. Prior literature suggests analyzing gait in phases. A preliminary data analysis, however, suggests that there exist six key events of the gait cycle, events that can adequately characterize gait for the purposes required of robotic rehabilitation including gait analysis and reference trajectory generation. Defining the ankle as an end effector and the hip as the origin of the coordinate frame and basing the linear regression calculations only on the six key events, i.e., Heel Strike, Toe Off, Pre-Swing, Initial Swing, Mid-Swing, and Terminal Swing, it is possible to generate a new calculated ankle trajectory with an arbitrary step length. The Leave-One-Out Cross Validation algorithm was used to estimate the fitting error of the calculated trajectory vs. the characteristic captured trajectory per subject, showing a fidelity average value of 95.2, 96.1, and 97.2%, respectively, for each step-length trial including all subjects. This research presents method to capture ankle trajectories from subjects and generate human-like ankle trajectories that could be scaled and computed on-line, could be adjusted to different gait scenarios, and could be used not only to generate reference trajectories for gait controllers, but also as an accurate and salient benchmark to test the human likeness of gait trajectories employed by existing robotic exoskeletal devices

    Niosomes based on synthetic cationic lipids for gene delivery: The influence of polar head-groups on the transfection efficiency in HEK-293, ARPE-19 and MSC-D1 cells

    Get PDF
    We designed niosomes based on three lipids that differed only in the polar-head group to analyze their influence on the transfection efficiency. These lipids were characterized by small-angle X-ray scattering before being incorporated into the niosomes which were characterized in terms of pKa, size, zeta potential, morphology and physical stability. Nioplexes were obtained upon the addition of a plasmid. Different ratios (w/w) were selected to analyze the influence of this parameter on size, charge and the ability to condense, release and protect the DNA. In vitro transfection experiments were performed in HEK-293, ARPE-19 and MSC-D1 cells. Our results show that the chemical composition of the cationic head-group clearly affects the physicochemical parameters of the niosomes and especially the transfection efficiency. Only niosomes based on cationic lipids with a dimethyl amino head group (lipid 3) showed a transfection capacity when compared with their counterparts amino (lipid 1) and tripeptide head-groups (lipid 2). Regarding cell viability, we clearly observed that nioplexes based on the cationic lipid 3 had a more deleterious effect than their counterparts, especially in ARPE-19 cells at 20/1 and 30/1 ratios. Similar studies could be extended to other series of cationic lipids in order to progress in the research on safe and efficient non-viral vectors for gene delivery purposes.This project was partially supported by the University of the Basque Country UPV/EHU (UFI 11/32), the National Council of Science and Technology (CONAYT), Mexico, Reg. # 217101, the Spanish Ministry of Education (Grant CTQ2010-20541, CTQ2010-14897), the Basque Government (Department of Education, University and Research, predoctoral BFI-2011-2226 grant), the Generalitat de Catalunya (2009SGR208, 2009SGR1331) and the Instituto de Salud Carlos III. Technical and human support provided by SGIker (UPV/EHU) is gratefully acknowledged. Authors also wish to thank the intellectual and technical assistance from the platform for Drug Formulation (NANBIOSIS) CIBER-BBN.Peer reviewe

    During gait with crutches

    Get PDF
    The goal of this study was to develop a three-dimensional kinematic and kinetic model of the right upper extremity and a Lofstrand crutch in order to analyze joint displacements and loads during crutch-assisted gait. A Lofstrand crutch was instrumented with a six-component load cell to measure forces and moments at the crutch tip. The crutch and the right upper extremity of a subject were instrumented with markers to obtain kinematic data. A biomechanical model based on rigid bodies was implemented in biomechanical analysis software. To demonstrate the functionality of the model, a pilot test was conducted on one healthy individual during Lofstrand crutch-assisted gait. The shoulder extended during the support phase and flexed in the swing phase, the elbow flexed during the swing, and the wrist remained in extension throughout the cycle. In the shoulder and elbow joints, the predominant reaction forces were upward, whereas the internal force moments were flexion and extension, respectively. This tool will be useful when it comes to identifying risk factors for joint pathology associated with pattern gait, aid design or crutch overuse.Peer Reviewe

    A common copy-number variant within SIRPB1 correlates with human Out-of-Africa migration after genetic drift correction

    Get PDF
    Previous reports have proposed that personality may have played a role on human Out-Of- Africa migration, pinpointing some genetic variants that were positively selected in the migrating populations. In this work, we discuss the role of a common copy-number variant within the SIRPB1 gene, recently associated with impulsive behavior, in the human Out-Of-Africa migration. With the analysis of the variant distribution across forty-two different populations, we found that the SIRPB1 haplotype containing duplicated allele significantly correlated with human migratory distance, being one of the few examples of positively selected loci found across the human world colonization. Circular Chromosome Conformation Capture (4C-seq) experiments from the SIRPB1 promoter revealed important 3D modifications in the locus depending on the presence or absence of the duplication variant. In addition, a 3' enhancer showed neural activity in transgenic models, suggesting that the presence of the CNV may compromise the expression of SIRPB1 in the central nervous system, paving the way to construct a molecular explanation of the SIRPB1 variants role in human migration

    Instrumentation and biomechanical model for kinematic and kinetic analysis of upper limbs during gait with crutches

    Full text link
    [EN] The goal of this study was to develop a three-dimensional kinematic and kinetic model of the right upper extremity and a Lofstrand crutch in order to analyze joint displacements and loads during crutch-assisted gait. A Lofstrand crutch was instrumented with a six-component load cell to measure forces and moments at the crutch tip. The crutch and the right upper extremity of a subject were instrumented with markers to obtain kinematic data. A biomechanical model based on rigid bodies was implemented in biomechanical analysis software. To demonstrate the functionality of the model, a pilot test was conducted on one healthy individual during Lofstrand crutch-assisted gait. The shoulder extended during the support phase and flexed in the swing phase, the elbow flexed during the swing, and the wrist remained in extension throughout the cycle. In the shoulder and elbow joints, the predominant reaction forces were upward, whereas the internal force moments were flexion and extension, respectively. This tool will be useful when it comes to identifying risk factors for joint pathology associated with pattern gait, aid design or crutch overuse.This work was supported by a grant from the Castile-La Mancha Social & Health Foundation (Fundación Sociosanitaria de Castilla la Mancha) (PI2010/50). The research for this manuscript was partially funded by a CONSOLIDER INGENIO grant from the Spanish Ministry of Science and Innovation under its HYPER project (Hybrid NeuroProsthetic and NeuroRobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, CSD2009- 00067). We should like to thank Ana de los Reyes, Antonio del Ama, Beatriz Crespo, Fernando Trincado, Iris Dimbwadyo, Vicente Lozano, and Soraya Pérez for their contributions to this study.Pérez-Rizo, E.; Solís-Mozos, M.; Belda Lois, JM.; Page Del Pozo, AF.; Taylor, J.; Pons, JL.; Gil-Agudo, Á. (2013). Instrumentation and biomechanical model for kinematic and kinetic analysis of upper limbs during gait with crutches. Journal of Accessibility and Design for All. 3(2):135-156. https://doi.org/10.17411/jacces.v3i2.16S1351563

    Fine-Tuning Tomato Agronomic Properties by Computational Genome Redesign

    Get PDF
    Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites
    corecore