165 research outputs found

    Effects of grazing intensity and the use of veterinary medical products on dung beetle biodiversity in the sub-mountainous landscape of Central Italy

    Get PDF
    Grazing extensification and intensification are among the main problems affecting European grasslands. We analyze the impact of grazing intensity (low and moderate) and the use of veterinary medical products (VMPs) on the dung beetle community in the province of Pesaro-Urbino (Italy). Grazing intensity is a key factor in explaining the diversity of dung beetles. In the case of the alpha diversity component, sites with a low level of grazing activity—related in a previous step to the subsequent abandonment of traditional farming—is characterized by a loss of species richness (q = 0) and a reduction in alpha diversity at the levels q = 1 and q = 2. In the case of beta diversity, sites with a different grazing intensity show remarkable differences in terms of the composition of their species assemblages. The use of VMPs is another important factor in explaining changes in dung beetle diversity. In sites with a traditional use of VMPs, a significant loss of species richness and biomass is observed, as is a notable effect on beta diversity. In addition, the absence of indicator species in sites with a historical use of VMPs corroborates the hypothesis that these substances have a ubiquitous effect on dung beetles. However, the interaction between grazing activity and VMPs when it comes to explaining changes in dung beetle diversity is less significant (or is not significant) than the main effects (each factor separately) for alpha diversity, biomass and species composition. This may be explained if we consider that both factors affect the various species differently. In other words, the reduction in dung availability affects several larger species more than it does very small species, although this does not imply that the former are more susceptible to injury caused by the ingestion of dung contaminated with VMPs. Finally, in order to prevent negative consequences for dung beetle diversity, we propose the maintenance of a moderate grazing intensity and the rational use of VMPs. It is our view that organic management can prevent excessive extensification while providing an economic stimulus to the sector. Simultaneously, it can also prevent the abuse of VMPs.Financial support was partially provided by Project CGL2015-68207-R of the Secretaría de Estado de Investigación, Desarrollo e Innovación of the Ministerio de Economía y Competitividad of Spain. Mattia Tonelli benefited for an Italian ministerial PhD scholarship

    In memoriam Gonzalo Halffter Salas (1932-2022)

    Get PDF

    La conservación de los insectos en España, una cuestión no resuelta

    Get PDF
    Los insectos, el grupo de organismos vivos con la más alta biodiversidad conocida, agrupa el 55% de todas las especies descritas y se encuentran en todos los ecosistemas terrestres y de agua dulce donde ocupan una gran variedad de nichos, participando en todos los procesos ecológicos. Este grupo de animales presenta una alta diversidad de hábitos tróficos, pudiendo ser fitófagos, saprófagos, descomponedores, depredadores o parasitoides, siendo los principales responsables del reciclaje de más del 20% de la biomasa vegetal terrestre (Samways, 1994, 2005), y uno de los principales degradadores de restos de origen animal (Galante & Marcos-García, 2004a). Por otra parte, los insectos son imprescindibles como mantenedores y generadores de biodiversidad vegetal ya que más del 75% de las plantas con flores de todo el mundo dependen de la acción polinizadora de los insectos (Tepedino & Griwold, 1990; Fontaine et al., 2006)

    Links Between Feeding Preferences and Electroantennogram Response Profiles in Dung Beetles: The Importance of Dung Odor Bouquets

    Get PDF
    The detection of dung odors is a crucial step in the food-searching behavior of dung beetles (Coleoptera: Scarabaeoidea). Yet, whether certain compounds characteristic of a given dung type contribute to a ‘choosy generalism’ behavior proposed for this taxonomic group is unknown. To address this, we analyzed the chemical composition of three types of dung (cow, horse, and rabbit) and conducted behavioral and electroantennogram (EAG) bioassays on 15 species of dung beetles using 19 volatile organic compounds representing the three dung samples. Chemical analyses revealed substantial qualitative and quantitative differences among dung types. When offered these food options in an olfactometer, 14 species exhibited a feeding preference. Surprisingly, all 19 compounds used in the EAG assays elicited antennal responses, with species displaying different olfactory profiles. The relationship between behavioral preferences and electrophysiological profiles highlighted that species with different food preferences had differences in antennal responses. Moreover, a specific set of EAG-active compounds (nonanal, sabinene, acetophenone, ρ-cresol, 2-heptanone, 1H-indole, and 6-methyl-5-hepten-2-one) were the strongest drivers in the distinct sensory profiles of the trophic preference groups. Our results point to the importance of the whole bouquet of dung-emanating compounds in driving food-searching behavior, but specific volatiles could aid in determining highly marked trophic preferences in certain species.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was supported by the projects PID2019-105418RB-I00 (Secretaría de Estado de Investigación, Desarrollo e Innovación – Ministerio de Ciencia e Innovación) and AICO-2020-031 (Dirección General de Ciencia e Investigación. Consellería de Innovación, Universidades, Ciencia y Sociedad Digital – Generalitat Valenciana). M.A. Urrutia acknowledges the support of the Dirección General de Ciencia e Investigación, Consellería de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana, for supporting his Ph.D. scholarship (GRISOLIAP/2021/185)

    Onthophagus pilauco sp. nov. (Coleoptera, Scarabaeidae): evidence of beetle extinction in the Pleistocene–Holocene transition in Chilean Northern Patagonia

    Get PDF
    The South American Pleistocene–Holocene transition has been characterized by drastic climatic and diversity changes. These rapid changes induced one of the largest and most recent extinctions in the megafauna at the continental scale. However, examples of the extinction of small animals (e.g., insects) are scarce, and the underlying causes of the extinction have been little studied. In this work, a new extinct dung beetle species is described from a late Pleistocene sequence (~15.2 k cal yr BP) at the paleoarcheological site Pilauco, Chilean Northern Patagonia. Based on morphological characters, this fossil is considered to belong to the genus Onthophagus Latreille, 1802 and named Onthophagus pilauco sp. nov. We carried out a comprehensive revision of related groups, and we analyzed the possible mechanism of diversification and extinction of this new species. We hypothesize that Onthophagus pilauco sp. nov. diversified as a member of the osculatii species-complex following migration processes related to the Great American Biotic Interchange (~3 Ma). The extinction of O. pilauco sp. nov. may be related to massive defaunation and climatic changes recorded in the Plesitocene-Holocene transition (12.8 k cal yr BP). This finding is the first record of this genus in Chile, and provides new evidence to support the collateral-extinction hypothesis related to the defaunation.FT was supported by CONICYT doctoral scholarship Grant #21171980 and Ilustre Municipalidad de Osorno, Osorno, Chile

    Evidence of Different Thermoregulatory Mechanisms between Two Sympatric Scarabaeus Species Using Infrared Thermography and Micro-Computer Tomography

    Get PDF
    In endotherms insects, the thermoregulatory mechanisms modulate heat transfer from the thorax to the abdomen to avoid overheating or cooling in order to obtain a prolonged flight performance. Scarabaeus sacer and S. cicatricosus, two sympatric species with the same habitat and food preferences, showed daily temporal segregation with S. cicatricosus being more active during warmer hours of the day in opposition to S. sacer who avoid it. In the case of S. sacer, their endothermy pattern suggested an adaptive capacity for thorax heat retention. In S. cicatricosus, an active ‘heat exchanger’ mechanism was suggested. However, no empirical evidence had been documented until now. Thermographic sequences recorded during flight performance showed evidence of the existence of both thermoregulatory mechanisms. In S. sacer, infrared sequences showed a possible heat insulator (passive thermal window), which prevents heat transfer from meso- and metathorax to the abdomen during flight. In S. cicatricosus, infrared sequences revealed clear and effective heat flow between the thorax and abdomen (abdominal heat transfer) that should be considered the main mechanism of thermoregulation. This was related to a subsequent increase in abdominal pumping (as a cooling mechanism) during flight. Computer microtomography scanning, anatomical dissections and internal air volume measurements showed two possible heat retention mechanisms for S. sacer; the abdominal air sacs and the development of the internal abdominal sternites that could explain the thermoregulation between thorax and abdomen. Our results suggest that interspecific interactions between sympatric species are regulated by very different mechanisms. These mechanisms create unique thermal niches for the different species, thereby preventing competition and modulating spatio-temporal distribution and the composition of dung beetle assemblages

    Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats

    Get PDF
    In terrestrial ecosystems, insects face a wide range of temperatures among habitats and time; consequently, the thermal niche is one of the main determinants of habitat selection and temporal patterns of activity. The replacement of native forests changes micro-climatic conditions and reduces the diversity of dung beetles; however, the physiological mechanisms behind these changes are not clear. We explore the role of the thermal niche in dung beetles to explain the ability of native species to exploit human-created habitats. Using infrared thermography, we measured variables associated with the thermal niche in 17 native species and used linear mixed-effects model and ANOVAs to compare disturbed habitats and the native forest. Endothermy and body mass explained the ability of dung beetles to exploit human-created open habitats. Small and diurnal species with very low endothermy were able to exploit deforested open habitats; evening/nocturnal/crepuscular species showed similar body mass and high endothermy in all habitats. Regarding thermoregulation mechanisms, none of the species (except one) showed defined or efficient mechanisms of physiological thermoregulation. In view of the accelerated process of forest replacement and climate change, a more profound understanding of the physiological requirements of species is essential to predict and mitigate future extinctions.Financial support was provided by CONICET (Project UE IBS # 22920160100130CO to M. Di Bitteti), UCAR-MAGyP (BIO 23, PIA 10105-14057 to G. Zurita) and ANPCyT (PICT-PRH 2702 to G. Zurita)

    Dung Beetles Eat Acorns to Increase Their Ovarian Development and Thermal Tolerance

    Get PDF
    Animals eat different foods in proportions that yield a more favorable balance of nutrients. Despite known examples of these behaviors across different taxa, their ecological and physiological benefits remain unclear. We identified a surprising dietary shift that confers ecophysiological advantages in a dung beetle species. Thorectes lusitanicus, a Mediterranean ecosystem species adapted to eat semi-dry and dry dung (dung-fiber consumers) is also actively attracted to oak acorns, consuming and burying them. Acorn consumption appears to confer potential advantages over beetles that do not eat acorns: acorn-fed beetles showed important improvements in the fat body mass, hemolymph composition, and ovary development. During the reproductive period (October-December) beetles incorporating acorns into their diets should have greatly improved resistance to low-temperature conditions and improved ovarian development. In addition to enhancing the understanding of the relevance of dietary plasticity to the evolutionary biology of dung beetles, these results open the way to a more general understanding of the ecophysiological implications of differential dietary selection on the ecology and biogeography of these insects

    Dung Beetle Assemblages Attracted to Cow and Horse Dung: The Importance of Mouthpart Traits, Body Size, and Nesting Behavior in the Community Assembly Process

    Get PDF
    Dung beetles use excrement for feeding and reproductive purposes. Although they use a range of dung types, there have been several reports of dung beetles showing a preference for certain feces. However, exactly what determines dung preference in dung beetles remains controversial. In the present study, we investigated differences in dung beetle communities attracted to horse or cow dung from a functional diversity standpoint. Specifically, by examining 18 functional traits, we sought to understand if the dung beetle assembly process is mediated by particular traits in different dung types. Species specific dung preferences were recorded for eight species, two of which prefer horse dung and six of which prefer cow dung. Significant differences were found between the functional traits of the mouthparts of the dung beetles attracted to horse dung and those that were attracted to cow dung. Specifically, zygum development and the percentage of the molar area and the conjunctive area differed between horse and cow dung colonizing beetles. We propose that the quantitative differences in the mouthpart traits of the species attracted to horse and cow dung respectively could be related to the differential capacity of the beetles to filtrate and concentrate small particles from the dung. Hence, the dung preference of dung beetles could be related to their ability to exploit a specific dung type, which varies according to their mouthpart traits. Moreover, we found that larger and nester beetles preferred cow dung, whereas smaller and non-nester beetles preferred horse dung. This finding could be related to the tradeoff between fitness and parental investments, and to the suitability of the trophic resource according to the season and species phenology

    Comparative thermoregulation between different species of dung beetles (Coleoptera: Geotrupinae)

    Get PDF
    Insects can use thermoregulation to keep their body temperatures within a certain range in response to thermal stress situations. The mechanisms to regulate internal temperature depend on whether species are endothermic or ectothermic species, i.e., if the heat source is internal and/or external. In this study, the thermal stress response due to excess heat was examined in individuals belonging to different species of the Geotrupinae subfamily by using a standardized protocol based on infrared thermography. All the measured heat stress variables allow discrimination among the considered species to a greater or lesser extent. The body heating rate in the heat stress range, the critical thermal maximum and the stress start temperature were the most important variables in discriminating between apterous and winged individuals (R2 = 52.5%, 51.1% and 50.0%, respectively). Examining the degree of association between the physiological similarity of individuals and some species traits suggest that flying capability and daily activity are related with different thermal responses. Based on the obtained results, the Geotrupinae subfamily can be divided into three ecophysiological groups: good, medium and non-thermoregulators. Within these groups, apterism appears mainly in those species with the ability to actively decrease their body temperature. Our results indicate that this ability may be partially due to the management of water loss related with evaporative cooling.This work was supported by the Spanish research project CGL2011-25544 of the Ministerio de Economía y Competitividad, as well as by the F. P. I. fellowship BES-2012–052010 to B.G
    corecore