177 research outputs found

    Studying the capacity of cellular encoding to generate feedforward neural network topologies

    Get PDF
    Proceeding of: IEEE International Joint Conference on Neural Networks, IJCNN 2004, Budapest, 25-29 July 2004Many methods to codify artificial neural networks have been developed to avoid the disadvantages of direct encoding schema, improving the search into the solution's space. A method to analyse how the search space is covered and how are the movements along search process applying genetic operators is needed in order to evaluate the different encoding strategies for multilayer perceptrons (MLP). In this paper, the generative capacity, this is how the search space is covered for a indirect scheme based on cellular systems, is studied. The capacity of the methods to cover the search space (topologies of MLP space) is compared with the direct encoding scheme.Publicad

    Neural Network architectures design by Cellular Automata evolution

    Get PDF
    4th Conference of Systemics Cybernetics and Informatics. Orlando, 23-26 July 2000The design of the architecture is a crucial step in the successful application of a neural network. However, the architecture design is basically, in most cases, a human experts job. The design depends heavily on both, the expert experience and on a tedious trial-and-error process. Therefore, the development of automatic methods to determine the architecture of feedforward neural networks is a field of interest in the neural network community. These methods are generally based on search techniques, as genetic algorithms, simulated annealing or evolutionary strategies. Most of the designed methods are based on direct representation of the parameters of the network. This representation does not allow scalability, so to represent large architectures very large structures are required. In this work, an indirect constructive encoding scheme is proposed to find optimal architectures of feed-forward neural networks. This scheme is based on cellular automata representations in order to increase the scalability of the method.Publicad

    Grammars and cellular automata for evolving neural networks architectures

    Get PDF
    IEEE International Conference on Systems, Man, and Cybernetics. Nashville, TN, 8-11 October 2000The class of feedforward neural networks trained with back-propagation admits a large variety of specific architectures applicable to approximation pattern tasks. Unfortunately, the architecture design is still a human expert job. In recent years, the interest to develop automatic methods to determine the architecture of the feedforward neural network has increased, most of them based on the evolutionary computation paradigm. From this approach, some perspectives can be considered: at one extreme, every connection and node of architecture can be specified in the chromosome representation using binary bits. This kind of representation scheme is called the direct encoding scheme. In order to reduce the length of the genotype and the search space, and to make the problem more scalable, indirect encoding schemes have been introduced. An indirect scheme under a constructive algorithm, on the other hand, starts with a minimal architecture and new levels, neurons and connections are added, step by step, via some sets of rules. The rules and/or some initial conditions are codified into a chromosome of a genetic algorithm. In this work, two indirect constructive encoding schemes based on grammars and cellular automata, respectively, are proposed to find the optimal architecture of a feedforward neural network

    Generative capacities of cellular automata codification for evolution of NN codification

    Get PDF
    Proceeding of: International Conference on Artificial Neural Networks. ICANN 2002, Madrid, Spain, August 28-30, 2002Automatic methods for designing artificial neural nets are desired to avoid the laborious and erratically human expert’s job. Evolutionary computation has been used as a search technique to find appropriate NN architectures. Direct and indirect encoding methods are used to codify the net architecture into the chromosome. A reformulation of an indirect encoding method, based on two bi-dimensional cellular automata, and its generative capacity are presented.Publicad

    Re-ranking of Yahoo snippets with the JIRS passage retrieval system

    Get PDF
    ComunicaciĂłn presentada en: Workshop on Cross Lingual Information Access, CLIA-2007, 20th International Joint Conference on Artificial Intelligence, IJCAI-07, Hyderabad, India, January 6-12, 2007Passage Retrieval (PR) systems are used as first step of the actual Question Answering (QA) systems. Usually, PR systems are traditional information retrieval systems which are not oriented to the specific problem of QA. In fact, these systems only search for the question keywords. JIRS Distance Density n-gram system is a QA-oriented PR system which has given good results in QA tasks when this is applied over static document collections. JIRS is able to search for the question structure in the document collection in order to find the passages with the greatest probability to contain the answer. JIRS is a language-independent PR system which has been already adapted to a few non-agglutinative European languages (such as Spanish, Italian, English and French) as well as to the Arabic language. A first attempt to adapt it to the Urdu Indian language was also made. In this paper, we investigate the possibility of basing on the web the JIRS retrieval of passages. The experiments we carried out show that JIRS allow to improve the coverage of the correct answers re-ranking the snippets obtained with Yahoo search engine.ICT EU-India; TEXT-MESS CICY

    Non-Direct Encoding Method Based on Cellular Automata to Design Neural Network Architectures

    Get PDF
    Architecture design is a fundamental step in the successful application of Feed forward Neural Networks. In most cases a large number of neural networks architectures suitable to solve a problem exist and the architecture design is, unfortunately, still a human expert’s job. It depends heavily on the expert and on a tedious trial-and-error process. In the last years, many works have been focused on automatic resolution of the design of neural network architectures. Most of the methods are based on evolutionary computation paradigms. Some of the designed methods are based on direct representations of the parameters of the network. These representations do not allow scalability; thus, for representing large architectures very large structures are required. More interesting alternatives are represented by indirect schemes. They codify a compact representation of the neural network. In this work, an indirect constructive encoding scheme is proposed. This scheme is based on cellular automata representations and is inspired by the idea that only a few seeds for the initial configuration of a cellular automaton can produce a wide variety of feed forward neural networks architectures. The cellular approach is experimentally validated in different domains and compared with a direct codification scheme.Publicad

    Evolutionary cellular configurations for designing feed-forward neural networks architectures

    Get PDF
    Proceeding of: 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001 Granada, Spain, June 13–15, 2001In the recent years, the interest to develop automatic methods to determine appropriate architectures of feed-forward neural networks has increased. Most of the methods are based on evolutionary computation paradigms. Some of the designed methods are based on direct representations of the parameters of the network. These representations do not allow scalability, so to represent large architectures, very large structures are required. An alternative more interesting are the indirect schemes. They codify a compact representation of the neural network. In this work, an indirect constructive encoding scheme is presented. This scheme is based on cellular automata representations in order to increase the scalability of the method

    Automatic symbolic modelling of co-evolutionarily learned robot skills

    Get PDF
    Proceeding of: 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001 Granada, Spain, June 13–15, 2001Evolutionary based learning systems have proven to be very powerful techniques for solving a wide range of tasks, from prediction to optimization. However, in some cases the learned concepts are unreadable for humans. This prevents a deep semantic analysis of what has been really learned by those systems. We present in this paper an alternative to obtain symbolic models from subsymbolic learning. In the first stage, a subsymbolic learning system is applied to a given task. Then, a symbolic classifier is used for automatically generating the symbolic counterpart of the subsymbolic model. We have tested this approach to obtain a symbolic model of a neural network. The neural network defines a simple controller af an autonomous robot. a competitive coevolutive method has been applied in order to learn the right weights of the neural network. The results show that the obtained symbolic model is very accurate in the task of modelling the subsymbolic system, adding to this its readability characteristic
    • …
    corecore