
Grammars and Cellular Automata for Evolving Neural Networks Architectures

J.M. Molina, I. Galvan, P. Isasi, A. Sanchis
Departamento de Informatica. Universidad Carlos I11 de Madrid.

ABSTRACT. The class of feed-forward neural networks trained
with back-propagation admits a large variety of specific
architectures applicable to approximation pattern tasks.
Unfortunately, the architecture design is still a human expert
job. In the recent years, the interest to develop automatic
methods to determine the architecture of the feed-forward neural
network has increased, most of them based on evolutionary
computation paradigm. From this approach, some perspectives
can be considered, at one extreme, every connection and node of
architecture can be specified in the chromosome representation
using binary bits. This kind of representation schemes is called
the direct encoding scheme. In order to reduce the length of the
genotype, the search space, and to make the problem more
scalable, indirect encoding schemes have been introduced. An
indirect scheme under a constructive algorithm, by the other
hand, starts with a minimal architecture and new levels, neurons
and connections are added, step by step, by some sets of rules.
The rules andor some initial conditions are codified into a
chromosome of a Genetic Algorithm. In this work, two indirect
constructive encoding schemes based on Grammars and Cellular
Automata, respectively, are proposed to find the optimal
architecture of a feed-forward neural network.

1. INTRODUCTION

The Neural Networks (NN) architecture design is the “key” of
the later efficient application of the net. Besides, still today is a
process basically guided by the expert’s knowledge about the
system. These experts are guided by their previous experience
and by a process of trial and error for deciding the best
architecture for a given problem. The design of the architecture
of a neural network can be seen as a search problem within the
space of architectures, where each point of the search space is a
defined architecture. Evidently, this search space is huge and the
task of finding the simplest network that solves a given problem
is a tedious and long task.

In the last years, many works have been centered toward
automatic resolution of the design of neural networks
architecture [1,2,3,4,5,6]. Two representation approaches exist
to find the optimum net architecture using Genetic Algorithm
(GA): one based on the complete representation of all the
possible connections and other based on an indirect
representation of the architecture. The first one is called Direct
Encoding Method, and is based on the codification of the
complete network (connections matrix) into the chromosome of
the GA, and starts with Ash’s work [7] and continues with other
works, including [SI.

method for designing neural networks by means of Genetic
Algorithms, where neural networks are represented throught
graph grammars, codified in the chromosomes of the
individuals. The grammatical approach is not the only proposed
representation method. Merril et al. [IO] introduced a fractal
representation for encoding the architectures, arguing that this
representation is more related with biological ideas than
constructive algorithms. Valls et al. [I 11 proposed a Multiagent
System to find optimal architectures in Radial Basis Neural
Networks.

One of the most important lacks of Kitano’s method is that fix
an NN of “n” neurons, an “m x n” matrix is needed, where “ I I ”

is the smallest power of 2 bigger than “n”, and only the uppcr
triangle of the “m x n” matrix is used, which also decreascs tlic
efficiency of the encoding. In Kitano’s method, the recursion is
not included [5] . In this work, one of the first objectives is to
extend and improve Kitano’s method to make a general and
powerfull method of designing NN, in particular Multilaycr
Perceptrons with a hidden layer, and bakpropagation algorithm
[12]. For the Multilayer Perceptrons considered, a mechanism of
representing NN by means of graph grammars, without
restrictions in the matrix size and with recursion, has been
developed. This grammatical mechanism is integred in :I

complete system, called GANET, for the design of NN applied t o
a considered problem.

The second method is based on Cellular Automata (CA) to find
the optimal architecture of a feed-forward neural network. also
trained with backpropagation. In this scheme, positions of
several seeds in a bidimensional grid are represented in the
chromosome. These seeds are used as the initial configuration 0 1
a cellular automata which is translated into a feed-forward
neural network through a growing procedure as the cellular
automata is evolved. Thus, the chromosome length is
significantly reduced and the scalability of the method is
increased.

The second one is the called Indirect Encoding Method that
consists on codifiying, not the complete network, but a compact
representation of it [I]. In 1990, Kitano [9] presents a new

0-7803-6583-6/00/$10.00 0 2000 IEEE 2497

These two new methods have proven to automatically design the
architecture of an NN to forecast one step ahead in the logistic
chaotic time series. The special features of this series make the
problem a good test bed for testing the two methods.

2. GRAMMATICAL APPROACH

The GANET system is composed of three modules, following the
general schema proposed by Kitano [9]. In Figure 1, the
architecture of the system is shown.

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:17 from IEEE Xplore. Restrictions apply.

Expansion of the Grammar

Fitness calculation

Training Process
Trained NN

Figure 1: GANET architecture: Genetic, Neural and Gramatical modules.

The scheme shown in Figure 1 is cycled, and each cycle
corresponds to a GA generation. By means of genetic operators,
a population of grammars is obtained, except tht: first one that,
as is usual [13], is randomly generated. These new individuals
are evaluated through a fitness function. To calculate the fitness,
the grammar codified in the individual chromosome is
expanded, and a bidimensional matrix (word) is obtained. In a
nest step, this word is decodified as an NN matrix of
connections. This matrix is transformed into an NN architecture
that is trainned. After training the NN, it is tested and an error
value is obtained. With this error and some other relevant
information about the NN (size, learning cycles, etc.), the fitness
value of the considered individual is computed. ‘The process is
repeated until all population is evaluated.

Grammatical Module
I n this work, Context Free Chomsky Grammars, tG2, have been
employed [14,151, particularly bidimensional or graph ones
[161. These grammars are defined as a quintuple, G = {C,, CN, S,
P; EM}, where C, is the alphabet of terminals, CN is the alphabet
of non-terminals, S is the start symbol, S €ZN, P is the
production or rules set and EM is the Expansion Method. This
kind of grammars generates words that are matrix of terminal
symbols. An example of this kind of grammars is:

CJ = {ET, CN, S, P, EM}, where:
& = { 0, I } alphabet of terminals
XN = {A,B,C,D} alphabet of non-terminals
S = start symbol, S E&
P = production or rules set = {

C::= , D::= 1
EM = Expansion Method = {Up and Right,Up and
Left, Down and Right, Down and Left}.

In order to carry out the derivation process in a bidimensional
context free grammar and to generate words, sometimes it is
necessary to insert a row, a column, both row and column or
neither. The position of the space inserted depends on the
position of the symbol and the expansion method. In this work,
the expansion method employed is the Up and Right one. For
generating a word useful for GANET system, a special derivation
mechanism has been developed. This mechanism keeps the
rectangularity of words during the derivation, inserting an
auxiliary symbol that produces, when necessary, the space
required before producing the desired derivation. For the Up and
Right expansion method, the inserted row will be placed over
the symbol and the inserted column will be placed at the right.
In the production rule of Figitire 2, the insertion of the row and
column is made in first plact:, and the non-terminal symbol (in
Figure 2 is the symbol B) is derived later.

Figure 2: Derivation of ndn-terminal symbol B in a bidimensional
production rule of a G2.

Then, the derivation sequence of all the non-terminal symbols is
carried out “through levels”. Firstly all the non-terminal symbols
of the same level (that belon,g to the same previous derivation
process) are derived and, secondly, the non-terminal symbols of
next levels. In the example of Figure 2, the symbol D (that
belongs to the first level) is derived before the derivation of the
symbol C (that belongs to the second level). This derivation
order assures that the number of auxiliary symbols is minimum.
Finally, to stop the derivation process (when using recursive
rules) two parameters ought to be specified: how many times a
recursive rule is applied (maximum value of recursion, MNR)
and the maximum number of levels with non-terminal symbols
(number of levels, NL).

Neural Net Module
The architecture selected for this module is a Multi Layer
Perceptron (MLP), with buc@ropagution, forward connections,
and with one hidden layer. A hidden layer allows any solution
without loosing generality, because is proven that any problem
could be solved with only one hidden layer if there is not
restrictions in the number of rieurons in this layer. The method
to obtain the MLP from the word obtained in the previous
module is as follows:

I . 0 substitutes auxiliary symbols. Figure 3 shows this step in
an example of word.

Figure 3: Transformation of auxiliary symbols in 0’s.

2. The matrix is divided in three zones, one for each layer.
The first zone is the input layer, the second one is the
hidden layer and the last one the output layer. The first and
the third layer have a constant size defined by the problem.
The second zone, the hidden layer, has a variable size and

2498

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:17 from IEEE Xplore. Restrictions apply.

depends on the word. The three zones appear in rows and
column, as it is shown in Figure 44.

N N N N N N N N N N N N N N N N N N N N T T T T T T T T

I

I

1+1

J
J + l

n
Figure 4: Matrix zones in neural module of GANET system

T T T T T T ' ~ T

Then, the first i components of the matrix will correspond with
input neurons, the followingj neurons with the hidden layer and
the last (n-j) with the ouput layer. Values of i a n d j were fixed
through the problem to solve and will be kept constant during all
the process. However, n is not a constant value, so the number
of neurons in the hidden layer depends on the concrete grammar
applied and this concrete grammar is learned by GANET system.
The final number of neurons in each layer is the number of
neurons that are conected to other neurons. This number is
obtained analyzing the connections that appear in the matrix of
Figure 3 following the division of Figure 44 at it is showed in
Figure 5 .

N N N N

Figure 5:

N N N N N N N N N N N N N N N N T T T T T T T T T T T T T T T T

Cone(:tions between neurons considei ring three ~ layers - -
in the Neural Network.

Each zone in Figure 5 corresponds to a different type of
connection:

. . .

.

Zone 'A': connections between neurons of the input layer.
Zone 'By: connections between neurons of the hidden layer.
Zone 'Cy: connections between neurons of the output layer.
Zone 'D' (D1 AND Dz): connections between neurons of the
input and hidden layers.
Zone 'E': connections between neurons of the input and
output layers.
Zone 'F' (F, AND F2): connections between neurons of the
output and hidden layers.

In the proposed method, only zones D and F (Figure 5) are
considered. The position (x, y) with a value of 0 in the matrix
means that x and y neurons are not connected, a 1 value will
mean that a connection exists. In order to evaluate the existence
of a connection between two neurons a 1 value must appear in
the two subzones (Dl and Dz, F1 and F2). The logical AND
operator has been used because the meaning of D1 (F,) is the
same than the D2 (F2). An example is shown in Figure 6.

\

\

Oulpul
lrycr -

1
2
3
4
5
6
7
8
9
10

Figure 6: Example of interpretation of a matrix to obtain a
Neural Network.

The NN interpreted from Figure 6 is shown in Figure 7

2499

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:17 from IEEE Xplore. Restrictions apply.

production rule in these graph grammars (S ::= anything) has
four non terminals in the right part. More non-terminal symbols
could be considered only increasing the size of the genotype.

3. CELLULAR AUTOMATA APPROACH

The Cellular Automata approach is composed by three modules:
the GA, the CA and the module responsible of neural network
training, as is shown in Figure 10.

Neiwork
Training Algorithm Automata

1 I
Figure 10: Cellular Automata System’s description.

Cellular Automata Module
For generating neural networks architectures, a bidimensional
CA has been included. The size of the bi-dimensional grid of the
automata depends on the number of input and output neurons
given by the problem and on the maximum number of hidden
neurons to be considered. Let Dim, be the number of rows in the
grid, its value is equal to the number of input neurons plus the
number of output neurons in the problem. On the other hand,
Dim, is the number of columns in the grid and corresponds with
the maximum number of hidden neurons to be considered. Each
cell in the grid could be in different states, active:, inactive, or
occupied by a seed. Two different kinds of seeds have been
introduced: growing seeds and decreasing seeds. The growing
seeds could be different (s,, s2, ..., s J, while the decreasing seeds
are all the same (d). The number of seeds of each type is a
parameter of the method. Each seed type corresponds with a
different type of rule, so there are two rules called growing rule
and decreasing rule respectively.

Growing rules: This type of rule reproduces a particular
growing seed when there are at least three idenf.ica1 growing
seeds in its neighbourhood. There are different configurations,
growing seeds located in: rows, columns, or in a comer of the
neighbourhood (see Figure 1 1). In Figure 11 and Figure 12 some
of those rules are shown (the others are symmetrical). Here s is a
specific growing seed, d is a decreasing seed, i is an inactive
state for the cell and a means that the cell could be in any state
o r contains any type of seed (even a decreasing seed).

WI
a a a

WI
a a a

a a a

WI
a a a

l ~ n l l ~ t l

Figure 11: Growing rules for some configuration of seeds in the
neighbourhood of a particular cell.

Decreasing rules: The growing rules previously specified allow
obtaining feed-forward neural networks with a large number of
connections. In order to remove connections in the network,
decreasing rules are included in the system. These rules
deactivate a cell in the grid when the cell has a decreasing seed
and two cells in a row of its neighbourhood contain also a
decreasing seed. One situation in which the decreasing rules can
be applied is shown in Figure 12, the other rules can be obtained
symmetrically.

Figure 12: Decreasing rules in the
neighbourhood of a particular cell

The CA is expanded as follows
The growing seeds are located in the grid.
An expansion of the growing seeds takes place. This

expansion consists on replicating each seed in turns, on its
quadratic neighbourhood, i n such a way that if a new seed
has to be placed in a position previously occupied by
another seed, the first one is, replaced.
The growing rules are applied until no more rules could be

fired.
The decreasing seeds are placed in the grid. If there are

some other seeds in those places, they are replaced.
The decreasing rules are applied until the final

configuration is reached.

Neural Net Module
As in the previously described method, an MLP with
backpropagation has been selected. To relate the grid of the
automata with an architecture of a neural network, the following
meaning for a cell in the grid (x,y) is defined: if x<n, -with n the
number of input neurones- (x,y) represents a connection between
the x-th input neuron and the jj-th hidden neuron; if x>n, (x,y)
represents a connection between the y-th hidden neuron and the
(x-n)-th output neuron. The conversion procedure is then as
follows:

Obtaining a binary matrix. M.- The places of the grid in
which a growing seed appear, are set to 1 and the places
corresponding with inactive cells or decreasing seeds are set
to 0. Thus, a DimlxDinr2 binary matrix, M=(m,S, is
obtained.
Processing the binary matrix M.- In the above binary

matrix the one value is interpreted as a connection, and the
zero value as the absence: of connection, the rows and
columns in the matrix with values 0 are removed. A new and
shorter matrix, called processed matrix (PM), is obtained.
Generating the feed-forward neural network.- For the PM

matrix, if pmV =1 then a connection between the i-th input
neuron and the j-th hidden neuron is created, or between the
j-th hidden neuron and the (i-n)-th output neuron, as is
previously described. If pmV=O, there do not exist
connection between that nearones.

Genetic Module
The size of the chromosomes in the GA corresponds with the
number of seeds, and it codifies all the possible locations of
seeds in the grid. Chromosomes have been codified in base 6,
where b is the number of rows in the grid: the number of inputs
plus the number of outputs. Each seed is determined by a
coordinate (x,y):

1)

2)

The first coordinate could be represented by an unique gen,
indicating the row in which i:he seed is located.
The second coordinate will need more than one gen, if as

usual the maximal number of hidden neurons is bigger than
b.

In this case, two genes have been used to codify the y
coordinate, what allows a maximum of (b-l)xb+b hidden
neurons. For instance, if there are 3 inputs and 2 outputs, the

2500

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:17 from IEEE Xplore. Restrictions apply.

maximum size of the hidden layer is: 4x5+5 = 25. This could be
a good estimation of the maximum number of neurons in the
hidden layer, but any other consideration could be taken into
account without modifying the proposed method.

X Y

I XI I Y l l IY12 I
Figure 13: Codification of each seed location in the GA chromosome

structure.

The chromosome will have 3 genes (Figure 13) for each seed to
be placed in the grid, firstly the growing seeds are represented
and finally the decreasing seeds. The number of seeds of each
type has to be determined previously, and is a parameter of the
method. If, for instance, there are five growing seeds, and five
decreasing seeds, the size of the chromosome is 30, divided in
ten trios of gens, the first five trios representing the growing
seeds, and the final five trios representing the decreasing seeds.
It is important to notice that the growing seeds belong to
different types of seeds, while the decreasing seeds are all of the
same type, as mentioned in the description of the automata rules.

The GA module takes charge of generating initial configurations
of the cellular automata, and to optimize these configurations
from the information obtained from the training module. The
CA takes the initial configuration and generates a final
configuration corresponding to an NN architecture. Finally, the
generated architecture has to be trained and evaluated for a
particular problem and the error is used as the fitness value for
the GA.

4. EXPERIMENT FOR LOGISTIC TIME SERIES

These two methods have been applied to determine the simplest
feed-forward neural network able to approximate the logistic
time series. The logistic map is given by equation 1.

Where h values determine the behavior of the serie. In this work
a value of h=3.97 and x(0) = 0.5 are used, and the map describes
a strongly chaotic time series. The use of the logistic map has
two main advantages:
0

0

x,+I =/2.x, .(1-x,)

The chaotic behavior and its prediction is a non trivial task
The optimal NN to predict the map is known. As the value
of the map at instant t deppends only on the value of the
map at instant t - I , the optimal network has to consider the
input carrying the t-1 signal.

In order to increase the complexity of the problem and to test the
ability of the methods to generate good architectures, five input
have been taken into account: xt4, xtJ, x,-~, xt-l, x,. Thus, the
system must find the most relevant input variables in the
dynamic behavior of the logistic time series, besides the
minimum number of hidden neurons to solve the problem.

Several “a priori” nets have been trained with 95 patterns during
700 cycles. The results of testing (see Figure 14) show that the
input xt is necessary to solve the problem and that the other
inputs allow to obtain better error values, but not in a significant
amount.

-~

Error=1.34x 10-
.. I I +/, I

E r r o ~ 5 . 4 5 Error =0.571x 10-

-.

4x 10-3
Figure 14: Testing errors of several NN for logistic time series

The fitness value employed considers the accuracy of the NN
that is given by two values: testing error and size of the NN. A
fitness function that only considers the error does not allon
finding the simplest NN. Then, the fitness function used i n this
work is given by equation 1. Where: p is the test patterns
number, 4 is the network output for pattern j, di is the desirccl
output for pattern j, nconex is the number of connections and k is
a parameter that weights the influence of the net size in thc
fitness function. In this work the experimental value of k is 1. I .

The experimental parameters in both methods are:

400 learning cycles.
200 generation of GA.
Population size 50 individuals.
Parent population 35 individuals.
Elitism percentage IO%, increased a 2% each 4 0
generations.
Mutation 1 YO.
k l . 1
95 patterns (100 iterations of logistic series with xo=0.5 and
h=3.97 with six decimals)
Learning factor a=0.9.

The NN obtained by GANET and CA has two neurons in the
hidden layer and a total of five connections (see FigurelS). The
error is 0.00129 and the fitness value is 481.26.

W

Figurel5: NN obtained by GANET for logistic time series.

5. CONCLUSIONS

The election of good neural networks architectures is an
important step in many problems where there is few knowledge
about the problem itself. Evolutionary computation techniques
are good approaches for automatically generate those good
architectures. However the codification of the network is a
crucial point in the success of the method. Direct codification’s
become inefficient from a practical point of view, making bigger
and redundant the search space. To solve this problem an
indirect encoding has to be used.

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:17 from IEEE Xplore. Restrictions apply.

Indirect encoding is driven to reduce the search space in such a
way that similar solutions are eliminated and represented by
only one representative. In these cases, the codification makes
the method able to find better architectures.

The first proposed method is a succesful extension of Kitano’s
works [9]. An automatic procedure to design neural networks
architectures has been developed by means of the bidimensional
grammar evolution. The considered grammars allow
overcoming Kitano’s restrictions that affect to the grammar
contents, the architecture of NNs and the genetic operators. In
this work these three restrictions are elimated. The grammars
include recursivity. The number of NN nodes (constant in
Kitano’s work, determined through the word size and fixed also
in the genotype) is evolved by GANET system in an optimal way
(the size of the final word is variable). The genetic operators, in
particular crossover, are generic and is not necessary to redefine
them. Moreover, this generalization of Kitano’s work extends
the capability of the automatic procedure without loosing the
quality of the obtained nets and without dismissing the results of
GA.

The genetic evolution of bidimensional grammars (codifying the
architecture of an NN) reduces the size of chromosomes and
improves the convergence of the algorithm. The grammar
codification does not reduce the search space and is more
efficient than direct encoding methods.

In the second method, CA’s are good candidates for non-direct
codifications. The constructive representation introduced in this
work also solves some of the problems for non-direct
codifications. The final representations have a reduced size and
could be controlled by the number of seeds used.

The results with the logistic map show how the complexity of
the achieved network could be reduced in spite of the fitness
function used. These methods have also been able to find the
appropriate network for the logistic map, identifying the only
useful input. This result could have a great practical interest
because some times the identification or importance of the
inputs is a primordial step in the solution of a problem,

6. REFERENCES

I I] S. Harp, Samad T. and Guha A. Towards the Genetic
Synthesis of Neural Networks. Proceedings of the Third
International Conference on Genetic Algorithms and their
applications, pp 360-369, San Mateo, CA, USA, 1989.

[2] G.F. Miller, P.M. Todd and S.U. Hegde. Designing neural
networks using genetic algorithms. In Proc. of the third
international conference on genetic algorithms and their
applications, pp 379-384, San Mateo, CA, USA, 1989.

[3] S. Harp, Samad T. and Guha A. Designing Application-
Specific Neural Networks using the Genetic Algorithm,
Advances in Neural Information Processing Systems, v012,

[4] F. Gruau. Genetic Synthesis of Boolean Neural Networks
with a Cell Rewriting Developmental Process. Proc. of
COGANN-92 International Workshop on Combinations of
Genetic Algorithms and Neural Networks, pp. 55-74, IEEE
Computer Society Press, 1990.

[5] F. Gruau. “Neural Network Synthesis Using Cellular
Encoding and the Genetic Algorithm”. PhD Thesis, Ecole
Normale Supkrieure de Lyon, (1994).

[6] F. Gruau. Automatic Definition of Modular Neural
Networks. Adaptive Behaviour, vol. 2, 3, I5 1-1 83, 1995.

447-454, 1990.

171 T. Ash. Dynamic Node Creation in Backpropagation
Networks ICs Report 8901, The Institute for Cognitive
Science, University of Califomia, San Diego (Saiensu-sh,
1988), 1988.

[SI D.B. Fogel, Fogel L.J. and Port0 V.W. Evolving Neural
Network, Biological Cybernetics, 63,487-493, 1990.

[9] H. Kitano. Designing Neural Networks using Genetic
Algorithms with Graph Generation System, Complex
Systems, 4,461-476, 1990.

[lo] J.W.L. Merril and R.F. Port. Fractally configured Neural
Networks. Neural Networks, 4, 53-60, 1991.

[I l l Valls J.M., Galvin I.M. and Molina J. M.
(2000),“Multiagent System for designing optimal Radial
Basis Neural Networks”, Information Processing and
Management of Uncertainty in Knowledge Based Systems.
Spain.

[12] Hartz J., Krough A. and R.G. Palmer (1991). “Introduction
to the Theory of Neural Computation”. Addison-Wesley.

[13] Goldberg D.E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley, New
York

[I41 Chomsky N. (1959).“0n Certain Formal Properties of
Grammars”, Information and Control 2,137-1 67.

[151 Hopcroft J.E. and Ullman J.D. (1 979). Introduction to
Automata Theory, Languages and Computation, Addison-
Wesley.

[161 Ehring, Nagel, Rozemberg and Rosenfeld (1 987).“Graph
Grammars and their Applications to Computer Science”,
Lecture Notes in Computer Science.

2502

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:17 from IEEE Xplore. Restrictions apply.

