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ABSTRACT. The class of feed-forward neural networks trained 
with back-propagation admits a large variety of specific 
architectures applicable to approximation pattern tasks. 
Unfortunately, the architecture design is still a human expert 
job. In the recent years, the interest to develop automatic 
methods to determine the architecture of the feed-forward neural 
network has increased, most of them based on evolutionary 
computation paradigm. From this approach, some perspectives 
can be considered, at one extreme, every connection and node of 
architecture can be specified in the chromosome representation 
using binary bits. This kind of representation schemes is called 
the direct encoding scheme. In order to reduce the length of the 
genotype, the search space, and to make the problem more 
scalable, indirect encoding schemes have been introduced. An 
indirect scheme under a constructive algorithm, by the other 
hand, starts with a minimal architecture and new levels, neurons 
and connections are added, step by step, by some sets of rules. 
The rules andor some initial conditions are codified into a 
chromosome of a Genetic Algorithm. In this work, two indirect 
constructive encoding schemes based on Grammars and Cellular 
Automata, respectively, are proposed to find the optimal 
architecture of a feed-forward neural network. 

1. INTRODUCTION 

The Neural Networks (NN) architecture design is the “key” of 
the later efficient application of the net. Besides, still today is a 
process basically guided by the expert’s knowledge about the 
system. These experts are guided by their previous experience 
and by a process of trial and error for deciding the best 
architecture for a given problem. The design of the architecture 
of a neural network can be seen as a search problem within the 
space of architectures, where each point of the search space is a 
defined architecture. Evidently, this search space is huge and the 
task of finding the simplest network that solves a given problem 
is a tedious and long task. 

In the last years, many works have been centered toward 
automatic resolution of the design of neural networks 
architecture [1,2,3,4,5,6]. Two representation approaches exist 
to find the optimum net architecture using Genetic Algorithm 
(GA): one based on the complete representation of all the 
possible connections and other based on an indirect 
representation of the architecture. The first one is called Direct 
Encoding Method, and is based on the codification of the 
complete network (connections matrix) into the chromosome of 
the GA, and starts with Ash’s work [7] and continues with other 
works, including [SI. 

method for designing neural networks by means of Genetic 
Algorithms, where neural networks are represented throught 
graph grammars, codified in the chromosomes of the 
individuals. The grammatical approach is not the only proposed 
representation method. Merril et al. [IO] introduced a fractal 
representation for encoding the architectures, arguing that this 
representation is more related with biological ideas than 
constructive algorithms. Valls et al. [I 11 proposed a Multiagent 
System to find optimal architectures in Radial Basis Neural 
Networks. 

One of the most important lacks of Kitano’s method is that fix 
an NN of “n” neurons, an “m x n” matrix is needed, where “ I I ”  

is the smallest power of 2 bigger than “n”, and only the uppcr 
triangle of the “m x n” matrix is used, which also decreascs tlic 
efficiency of the encoding. In Kitano’s method, the recursion is 
not included [ 5 ] .  In this work, one of the first objectives is to 
extend and improve Kitano’s method to make a general and 
powerfull method of designing NN, in particular Multilaycr 
Perceptrons with a hidden layer, and bakpropagation algorithm 
[12]. For the Multilayer Perceptrons considered, a mechanism of  
representing NN by means of graph grammars, without 
restrictions in the matrix size and with recursion, has been 
developed. This grammatical mechanism is integred in :I 

complete system, called GANET, for the design of NN applied t o  
a considered problem. 

The second method is based on Cellular Automata (CA) to find 
the optimal architecture of a feed-forward neural network. also 
trained with backpropagation. In this scheme, positions of 
several seeds in a bidimensional grid are represented in the 
chromosome. These seeds are used as the initial configuration 0 1  
a cellular automata which is translated into a feed-forward 
neural network through a growing procedure as the cellular 
automata is evolved. Thus, the chromosome length is 
significantly reduced and the scalability of the method is 
increased. 

The second one is the called Indirect Encoding Method that 
consists on codifiying, not the complete network, but a compact 
representation of it [I]. In 1990, Kitano [9] presents a new 
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These two new methods have proven to automatically design the 
architecture of an NN to forecast one step ahead in the logistic 
chaotic time series. The special features of this series make the 
problem a good test bed for testing the two methods. 

2. GRAMMATICAL APPROACH 

The GANET system is composed of three modules, following the 
general schema proposed by Kitano [9]. In Figure 1, the 
architecture of the system is shown. 
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Fitness calculation 

Training Process 
Trained NN 

Figure 1: GANET architecture: Genetic, Neural and Gramatical modules. 

The scheme shown in Figure 1 is cycled, and each cycle 
corresponds to a GA generation. By means of genetic operators, 
a population of grammars is obtained, except tht: first one that, 
as is usual [13], is randomly generated. These new individuals 
are evaluated through a fitness function. To calculate the fitness, 
the grammar codified in the individual chromosome is 
expanded, and a bidimensional matrix (word) is obtained. In a 
nest step, this word is decodified as an NN matrix of 
connections. This matrix is transformed into an NN architecture 
that is trainned. After training the NN, it is tested and an error 
value is obtained. With this error and some other relevant 
information about the NN (size, learning cycles, etc.), the fitness 
value of the considered individual is computed. ‘The process is 
repeated until all population is evaluated. 

Grammatical Module 
I n  this work, Context Free Chomsky Grammars, tG2, have been 
employed [ 14,151, particularly bidimensional or graph ones 
[ 161. These grammars are defined as a quintuple, G = {C,, CN, S, 
P; EM}, where C, is the alphabet of terminals, CN is the alphabet 
of non-terminals, S is the start symbol, S €ZN, P is the 
production or rules set and EM is the Expansion Method. This 
kind of grammars generates words that are matrix of terminal 
symbols. An example of this kind of grammars is: 

CJ = {ET, CN, S, P, EM}, where: 
& = { 0, I } alphabet of terminals 
XN = {A,B,C,D} alphabet of non-terminals 
S = start symbol, S E& 
P = production or rules set = { 

C::= , D::= 1 
EM = Expansion Method = {Up and Right,Up and 
Left, Down and Right, Down and Left}. 

In order to carry out the derivation process in a bidimensional 
context free grammar and to generate words, sometimes it is 
necessary to insert a row, a column, both row and column or 
neither. The position of the space inserted depends on the 
position of the symbol and the expansion method. In this work, 
the expansion method employed is the Up and Right one. For 
generating a word useful for GANET system, a special derivation 
mechanism has been developed. This mechanism keeps the 
rectangularity of words during the derivation, inserting an 
auxiliary symbol that produces, when necessary, the space 
required before producing the desired derivation. For the Up and 
Right expansion method, the inserted row will be placed over 
the symbol and the inserted column will be placed at the right. 
In the production rule of Figitire 2, the insertion of the row and 
column is made in first plact:, and the non-terminal symbol (in 
Figure 2 is the symbol B) is derived later. 

Figure 2: Derivation of ndn-terminal symbol B in a bidimensional 
production rule of a G2. 

Then, the derivation sequence of all the non-terminal symbols is 
carried out “through levels”. Firstly all the non-terminal symbols 
of the same level (that belon,g to the same previous derivation 
process) are derived and, secondly, the non-terminal symbols of 
next levels. In the example of Figure 2, the symbol D (that 
belongs to the first level) is derived before the derivation of the 
symbol C (that belongs to the second level). This derivation 
order assures that the number of auxiliary symbols is minimum. 
Finally, to stop the derivation process (when using recursive 
rules) two parameters ought to be specified: how many times a 
recursive rule is applied (maximum value of recursion, MNR) 
and the maximum number of levels with non-terminal symbols 
(number of levels, NL). 

Neural Net Module 
The architecture selected for this module is a Multi Layer 
Perceptron (MLP), with buc@ropagution, forward connections, 
and with one hidden layer. A hidden layer allows any solution 
without loosing generality, because is proven that any problem 
could be solved with only one hidden layer if there is not 
restrictions in the number of rieurons in this layer. The method 
to obtain the MLP from the word obtained in the previous 
module is as follows: 

I .  0 substitutes auxiliary symbols. Figure 3 shows this step in 
an example of word. 

Figure 3: Transformation of auxiliary symbols in 0’s. 

2. The matrix is divided in three zones, one for each layer. 
The first zone is the input layer, the second one is the 
hidden layer and the last one the output layer. The first and 
the third layer have a constant size defined by the problem. 
The second zone, the hidden layer, has a variable size and 
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depends on the word. The three zones appear in rows and 
column, as it is shown in Figure 44. 

N N N N  N N N N  N N N N  N N N N  N N N N  T T T T  T T T T  

I 

I 

1+1 

J 
J + l  

n 
Figure 4: Matrix zones in neural module of GANET system 

T T T T  T T ' ~ T  

Then, the first i components of the matrix will correspond with 
input neurons, the followingj neurons with the hidden layer and 
the last (n-j) with the ouput layer. Values of i a n d j  were fixed 
through the problem to solve and will be kept constant during all 
the process. However, n is not a constant value, so the number 
of neurons in the hidden layer depends on the concrete grammar 
applied and this concrete grammar is learned by GANET system. 
The final number of neurons in each layer is the number of 
neurons that are conected to other neurons. This number is 
obtained analyzing the connections that appear in the matrix of 
Figure 3 following the division of Figure 44 at it is showed in 
Figure 5 .  

N N N N  

Figure 5: 

N N N N  N N N N  N N N N  N N N N  T T T T  T T T T  T T T T  T T T T  

Cone( :tions between neurons considei ring three ~ layers - - 
in the Neural Network. 

Each zone in Figure 5 corresponds to a different type of 
connection: 

. . . 

. 

Zone 'A': connections between neurons of the input layer. 
Zone 'By: connections between neurons of the hidden layer. 
Zone 'Cy: connections between neurons of the output layer. 
Zone 'D' (D1 AND Dz): connections between neurons of the 
input and hidden layers. 
Zone 'E': connections between neurons of the input and 
output layers. 
Zone 'F' (F, AND F2): connections between neurons of the 
output and hidden layers. 

In the proposed method, only zones D and F (Figure 5 )  are 
considered. The position (x, y) with a value of 0 in the matrix 
means that x and y neurons are not connected, a 1 value will 
mean that a connection exists. In order to evaluate the existence 
of a connection between two neurons a 1 value must appear in 
the two subzones (Dl and Dz, F1 and F2). The logical AND 
operator has been used because the meaning of D1 (F,) is the 
same than the D2 (F2). An example is shown in Figure 6. 

\ 

\ 

Oulpul 
lrycr - 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Figure 6: Example of interpretation of a matrix to obtain a 
Neural Network. 

The NN interpreted from Figure 6 is shown in Figure 7 
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production rule in these graph grammars (S ::= anything) has 
four non terminals in the right part. More non-terminal symbols 
could be considered only increasing the size of the genotype. 

3. CELLULAR AUTOMATA APPROACH 

The Cellular Automata approach is composed by three modules: 
the GA, the CA and the module responsible of neural network 
training, as is shown in Figure 10. 

Neiwork 
Training Algorithm Automata 

1 I 
Figure 10: Cellular Automata System’s description. 

Cellular Automata Module 
For generating neural networks architectures, a bidimensional 
CA has been included. The size of the bi-dimensional grid of the 
automata depends on the number of input and output neurons 
given by the problem and on the maximum number of hidden 
neurons to be considered. Let Dim, be the number of rows in the 
grid, its value is equal to the number of input neurons plus the 
number of output neurons in the problem. On the other hand, 
Dim, is the number of columns in the grid and corresponds with 
the maximum number of hidden neurons to be considered. Each 
cell in the grid could be in different states, active:, inactive, or 
occupied by a seed. Two different kinds of seeds have been 
introduced: growing seeds and decreasing seeds. The growing 
seeds could be different (s,, s2, ..., s J, while the decreasing seeds 
are all the same (d). The number of seeds of each type is a 
parameter of the method. Each seed type corresponds with a 
different type of rule, so there are two rules called growing rule 
and decreasing rule respectively. 

Growing rules: This type of rule reproduces a particular 
growing seed when there are at least three idenf.ica1 growing 
seeds in its neighbourhood. There are different configurations, 
growing seeds located in: rows, columns, or in a comer of the 
neighbourhood (see Figure 1 1). In Figure 11 and Figure 12 some 
of those rules are shown (the others are symmetrical). Here s is a 
specific growing seed, d is a decreasing seed, i is an inactive 
state for the cell and a means that the cell could be in any state 
o r  contains any type of seed (even a decreasing seed). 

WI 
a a a  

WI 
a a a  

a a a  

WI 
a a a  

l ~ n l l ~ t l  

Figure 11: Growing rules for some configuration of seeds in the 
neighbourhood of a particular cell. 

Decreasing rules: The growing rules previously specified allow 
obtaining feed-forward neural networks with a large number of 
connections. In order to remove connections in the network, 
decreasing rules are included in the system. These rules 
deactivate a cell in the grid when the cell has a decreasing seed 
and two cells in a row of its neighbourhood contain also a 
decreasing seed. One situation in which the decreasing rules can 
be applied is shown in Figure 12, the other rules can be obtained 
symmetrically. 

Figure 12: Decreasing rules in the 
neighbourhood of a particular cell 

The CA is expanded as follows 
The growing seeds are located in the grid. 
An expansion of the growing seeds takes place. This 

expansion consists on replicating each seed in turns, on its 
quadratic neighbourhood, i n  such a way that if a new seed 
has to be placed in a position previously occupied by 
another seed, the first one is, replaced. 
The growing rules are applied until no more rules could be 

fired. 
The decreasing seeds are placed in the grid. If there are 

some other seeds in those places, they are replaced. 
The decreasing rules are applied until the final 

configuration is reached. 

Neural Net Module 
As in the previously described method, an MLP with 
backpropagation has been selected. To relate the grid of the 
automata with an architecture of a neural network, the following 
meaning for a cell in the grid (x,y) is defined: if x<n, -with n the 
number of input neurones- (x,y) represents a connection between 
the x-th input neuron and the jj-th hidden neuron; if x>n, (x,y) 
represents a connection between the y-th hidden neuron and the 
(x-n)-th output neuron. The conversion procedure is then as 
follows: 

Obtaining a binary matrix. M.- The places of the grid in 
which a growing seed appear, are set to 1 and the places 
corresponding with inactive cells or decreasing seeds are set 
to 0. Thus, a DimlxDinr2 binary matrix, M=(m,S, is 
obtained. 
Processing the binary matrix M.- In the above binary 

matrix the one value is interpreted as a connection, and the 
zero value as the absence: of connection, the rows and 
columns in the matrix with values 0 are removed. A new and 
shorter matrix, called processed matrix (PM), is obtained. 
Generating the feed-forward neural network.- For the PM 

matrix, if pmV =1 then a connection between the i-th input 
neuron and the j-th hidden neuron is created, or between the 
j-th hidden neuron and the (i-n)-th output neuron, as is 
previously described. If pmV=O, there do not exist 
connection between that nearones. 

Genetic Module 
The size of the chromosomes in the GA corresponds with the 
number of seeds, and it codifies all the possible locations of 
seeds in the grid. Chromosomes have been codified in base 6,  
where b is the number of rows in the grid: the number of inputs 
plus the number of outputs. Each seed is determined by a 
coordinate (x,y): 

1) 

2) 

The first coordinate could be represented by an unique gen, 
indicating the row in which i:he seed is located. 
The second coordinate will need more than one gen, if as 

usual the maximal number of hidden neurons is bigger than 
b. 

In this case, two genes have been used to codify the y 
coordinate, what allows a maximum of (b-l)xb+b hidden 
neurons. For instance, if there are 3 inputs and 2 outputs, the 

2500 

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:17 from IEEE Xplore.  Restrictions apply.



maximum size of the hidden layer is: 4x5+5 = 25. This could be 
a good estimation of the maximum number of neurons in the 
hidden layer, but any other consideration could be taken into 
account without modifying the proposed method. 

X Y  

I XI I Y l l  IY12 I 
Figure 13: Codification of each seed location in the GA chromosome 

structure. 

The chromosome will have 3 genes (Figure 13) for each seed to 
be placed in the grid, firstly the growing seeds are represented 
and finally the decreasing seeds. The number of seeds of each 
type has to be determined previously, and is a parameter of the 
method. If, for instance, there are five growing seeds, and five 
decreasing seeds, the size of the chromosome is 30, divided in 
ten trios of gens, the first five trios representing the growing 
seeds, and the final five trios representing the decreasing seeds. 
It is important to notice that the growing seeds belong to 
different types of seeds, while the decreasing seeds are all of the 
same type, as mentioned in the description of the automata rules. 

The GA module takes charge of generating initial configurations 
of the cellular automata, and to optimize these configurations 
from the information obtained from the training module. The 
CA takes the initial configuration and generates a final 
configuration corresponding to an NN architecture. Finally, the 
generated architecture has to be trained and evaluated for a 
particular problem and the error is used as the fitness value for 
the GA. 

4. EXPERIMENT FOR LOGISTIC TIME SERIES 

These two methods have been applied to determine the simplest 
feed-forward neural network able to approximate the logistic 
time series. The logistic map is given by equation 1. 

Where h values determine the behavior of the serie. In this work 
a value of h=3.97 and x(0) = 0.5 are used, and the map describes 
a strongly chaotic time series. The use of the logistic map has 
two main advantages: 
0 

0 

x,+I =/2.x, .(1-x,) 

The chaotic behavior and its prediction is a non trivial task 
The optimal NN to predict the map is known. As the value 
of the map at instant t deppends only on the value of the 
map at instant t - I ,  the optimal network has to consider the 
input carrying the t-1 signal. 

In order to increase the complexity of the problem and to test the 
ability of the methods to generate good architectures, five input 
have been taken into account: xt4, xtJ, x,-~, xt-l, x,. Thus, the 
system must find the most relevant input variables in the 
dynamic behavior of the logistic time series, besides the 
minimum number of hidden neurons to solve the problem. 

Several “a priori” nets have been trained with 95 patterns during 
700 cycles. The results of testing (see Figure 14) show that the 
input xt is necessary to solve the problem and that the other 
inputs allow to obtain better error values, but not in a significant 
amount. 

-~ 

Error=1.34x 10- 
.. I I +/, I 

E r r o ~ 5 . 4 5  Error =0.571x 10- 

-. 

4x 10-3 
Figure 14: Testing errors of several NN for logistic time series 

The fitness value employed considers the accuracy of the NN 
that is given by two values: testing error and size of the NN. A 
fitness function that only considers the error does not allon 
finding the simplest NN. Then, the fitness function used i n  this 
work is given by equation 1. Where: p is the test patterns 
number, 4 is the network output for pattern j, di is the desirccl 
output for pattern j, nconex is the number of connections and k is 
a parameter that weights the influence of the net size in thc 
fitness function. In this work the experimental value of k is 1. I .  

The experimental parameters in both methods are: 

400 learning cycles. 
200 generation of GA. 
Population size 50 individuals. 
Parent population 35 individuals. 
Elitism percentage IO%, increased a 2% each 4 0  
generations. 
Mutation 1 YO. 
k l . 1  
95 patterns (100 iterations of logistic series with xo=0.5 and 
h=3.97 with six decimals) 
Learning factor a=0.9. 

The NN obtained by GANET and CA has two neurons in the 
hidden layer and a total of five connections (see FigurelS). The 
error is 0.00129 and the fitness value is 481.26. 

W 

Figurel5: NN obtained by GANET for logistic time series. 

5. CONCLUSIONS 

The election of good neural networks architectures is an 
important step in many problems where there is few knowledge 
about the problem itself. Evolutionary computation techniques 
are good approaches for automatically generate those good 
architectures. However the codification of the network is a 
crucial point in the success of the method. Direct codification’s 
become inefficient from a practical point of view, making bigger 
and redundant the search space. To solve this problem an 
indirect encoding has to be used. 
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Indirect encoding is driven to reduce the search space in such a 
way that similar solutions are eliminated and represented by 
only one representative. In these cases, the codification makes 
the method able to find better architectures. 

The first proposed method is a succesful extension of Kitano’s 
works [9]. An automatic procedure to design neural networks 
architectures has been developed by means of the bidimensional 
grammar evolution. The considered grammars allow 
overcoming Kitano’s restrictions that affect to the grammar 
contents, the architecture of NNs and the genetic operators. In 
this work these three restrictions are elimated. The grammars 
include recursivity. The number of NN nodes (constant in 
Kitano’s work, determined through the word size and fixed also 
in the genotype) is evolved by GANET system in an optimal way 
(the size of the final word is variable). The genetic operators, in 
particular crossover, are generic and is not necessary to redefine 
them. Moreover, this generalization of Kitano’s work extends 
the capability of the automatic procedure without loosing the 
quality of the obtained nets and without dismissing the results of 
GA. 

The genetic evolution of bidimensional grammars (codifying the 
architecture of an NN) reduces the size of chromosomes and 
improves the convergence of the algorithm. The grammar 
codification does not reduce the search space and is more 
efficient than direct encoding methods. 

In the second method, CA’s are good candidates for non-direct 
codifications. The constructive representation introduced in this 
work also solves some of the problems for non-direct 
codifications. The final representations have a reduced size and 
could be controlled by the number of seeds used. 

The results with the logistic map show how the complexity of 
the achieved network could be reduced in spite of the fitness 
function used. These methods have also been able to find the 
appropriate network for the logistic map, identifying the only 
useful input. This result could have a great practical interest 
because some times the identification or importance of the 
inputs is a primordial step in the solution of a problem, 
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