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ABSTRACT 

 
The design of the architecture is a crucial step in the successful 
application of a neural network. However, the architecture 
design is basically, in most cases, a human experts job. The 
design depends heavily on both, the expert experience and on a 
tedious trial-and-error process. Therefore, the development of 
automatic methods to determine the architecture of feed-
forward neural networks is a field of interest in the neural 
network community. These methods are generally based on 
search techniques, as genetic algorithms, simulated annealing 
or evolutionary strategies. Most of the designed methods are 
based on direct representation of the parameters of the 
network. This representation does not allow scalability, so to 
represent large architectures very large structures are required. 
In this work, an indirect constructive encoding scheme is 
proposed to find optimal architectures of feed-forward neural 
networks. This scheme is based on cellular automata 
representations in order to increase the scalability of the 
method. 
 
Keywords: Neural Networks, Cellular Automata, Machine 
Learning, Evolutionary Computation. 
 
 

1. INTRODUCTION 
 
The design of neural network architectures is crucial in the 
successful application because the architecture may strongly 
drive the neural network's information processing abilities. In 
most of the cases exist a large number of architectures of feed-
forward neural networks set suitable to solve an approximation 
problem. Unfortunately, the architecture design is still a human 
experts job. It depends heavily on the expert experience and on 
a tedious trial-and-error process. There is no systematic way to 
design a near optimal architecture automatically for a given 
task.  
 
Designing the optimal architecture can be formulated as a 
search problem in the architectures space, where each point 
represents an architecture. The search space of all possible 
architectures is very large, and the task of finding the simplest 
architecture may be an arduous and mostly a random task. 
 
In last years, many works have been centered toward automatic 
resolution of the design of neural networks architecture [1, 2, 
3, 4, 5]. Two representation approaches exist to find the 

optimum net architecture using Genetic Algorithm (GA): one 
based on the complete representation of all the possible 
connections and other based on an indirect representation of 
the architecture. The first one is called Direct Encoding 
Method, and is based on the codification of the complete 
network (connections matrix) into the chromosome of the GA, 
and starts with Ash’s work [6] and continues with other works, 
including [7, 8, 9, 10]. The direct representation is relatively 
simple and straightforward to implement. However, it does not 
scale well since large architectures require very large 
chromosomes to be represented. It is specially suitable for 
small and problem dependent particular architectures. In these 
cases, some unpredictable designs could be reached [9]. 
However, the capabilities of direct encoding for larger 
architectures are limited, remaining to be proven whether it can 
scale up to more complex tasks, because large architectures 
requires much larger chromosomes. This could end in a too 
huge space search that could make the method impossible in 
practice. 
 
In order to reduce the length of the genotype, the search space, 
and to make the problem more scalable, indirect encoding 
scheme has been proposed in last years. An indirect scheme 
under a constructive algorithm, by the other hand, starts with a 
minimal architecture and new levels, neurons and connections 
are added, step by step, using some sets of rules. The rules 
and/or some initial conditions are codified into a chromosome 
of a GA. In this way, an evolution towards good constructive 
rules is achieved, and there is no evolution of architectures by 
themselves. The first indirect encoding consisted in the 
codification of different connectivity patterns as a whole, 
instead of each connection particularly [1]. This reduces the 
search space, limiting the possible pattern connections to those 
which follows some predetermined rules. These limitations in 
the connections do not affect to the power of the architecture, 
because is well known that many connectivity patterns have 
similar learning abilities. Although the parametric encoding 
can reduce the length of the binary codification of neural 
networks architectures, still has similar scalability problems as 
the direct encoding. One of the works to avoid the scalability 
problems was from Kitano [11], introducing a constructive 
scheme based on grammars. The solution proposed by Kitano 
was to encode networks as grammars, and let the GA to evolve 
grammars instead of networks architectures. Other works have 
considered some variations of Kitano's rule descriptions using 
recursive equations to model the growth of connection matrix 
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[12]. In this case, the coefficients of some fixed equations were 
codified as chromosomes and evolved by a GA. 
 
The grammatical approach is not the only proposed 
representation method. Merril and Port [13] introduce a fractal 
representation for encoding the architectures, arguing that it is 
more related with biological ideas than constructive 
algorithms. They used fast simulated annealing for 
architectures evolution. 
 
In this work, an indirect constructive encoding scheme, based 
on Cellular Automata (CA), is proposed to find the optimal 
architecture of a feed-forward neural network. In this scheme, 
positions of several seeds in a bidimensional grid are 
represented in the chromosome. These seeds are used as the 
initial configuration of a cellular automata which is translated 
into a feed-forward neural network through a growing 
procedure as the cellular automata is evolved. Thus, the 
chromosome length is significantly reduced and the scalability 
of the method is increased. 
 
This method has been proven to automatically design the 
optimal architecture of a neural network to forecast one step 
ahead in a time series. The well known logistic chaotic time 
series has been used for prediction. The special features of this 
series makes the problem a good test bed in order to prove the 
ability of the method to generate good architectures. 
 
 
2. CELLULAR AUTOMATA REPRESENTING FEED-
FORWARD NEURAL NETWORKS 
 
Cellular Automata consist of an n-dimensional grid of M 
machines, called cells, that could be in different states. 
Usually, the dimension of the lattice is one or two, and the 
states of the cells are binary. The cells can change their state 
depending on the state of the cells in their neighbourhood. This 
modification is specified through rules. All the cells change 
their state following same rules. The state of each cell in the 
lattice in some instant, determines what is called configuration. 
The evolution of the CA is determined by the application of the 
rules over a configuration to obtain a new configuration and so 
on. CA have been mainly studied as mathematical models for 
many physical systems [14].  
 
The features of a CA depend on the rules that govern its 
behaviour. Some works have been done to automatically 
evolve the rules of cellular automata. In 1988, Packard [15] 
used a GA to evolve CA for simple tasks. More recently other 
techniques as Genetic Programming have been used for the 
same problem [16]. More difficult problems, as the density-
classification problem [17,18], and the synchronisation 
problem [19] have proven the capabilities of GA to find CA's 
able to solve complex problems. 
 
2.1 Cellular automata description 
 
For generating neural networks architectures, a bi-dimensonal 
CA has been proposed. The size of the bi-dimensional grid of 
the automata depends on the number of input and output 
neurons given by the problem and on the maximum number of 
hidden neurons to be considered. Let Dimx be the number of 
rows in the grid, its value is equal to the number of input 
neurons plus the number of output neurons in the problem. On 
the other hand, Dimy is the number of columns in the grid and 

corresponds with the maximum number of hidden neurons to 
be considered. Each cell in the grid could be in different states, 
active, inactive, or occupied by a seed. Two different kinds of 
seeds have been introduced: growing seeds and decreasing 
seeds. The growing seeds could be different (s1, s2,..., sm), 
while the decreasing seeds are all the same (d). The number of 
seeds of each type is a parameter of the method. Each seed 
type corresponds with a different type of rule, so there are two 
rules called growing rule and decreasing rule respectively. 
 
Growing rule: This type of rule reproduces a particular 
growing seed when there are at least three identical growing 
seeds in its neighbourhood. There are different configurations, 
growing seeds located in: rows, columns, or in a corner of the 
neighbourhood (see table 1). In tables 1 and 2 some of those 
rules are shown (the others are symmetrical). Here s is a 
specific growing seed, d is a decreasing seed, i is an inactive 
state for the cell and a means that the cell could be in any state 
or contains any type of seed (even a decreasing seed). 
 

s s s  s s s 
a i a ⇒ a s a 
a a a  a a a 
       
s s a  s s a 
s i a ⇒ s s a 
a a a  a a a 

Table 1. Growing rules for some configuration of seeds in the 
neighbourhood of a particular cell. 

 
Decreasing rules: The growing rules previously specified 
allow to obtain feed-forward neural networks with a large 
number of connections. In order to remove connections in the 
network, decreasing rules are included in the system. These 
rules deactivate a cell in the grid when the cell has a decreasing 
seed and two cells in a row of its neighbourhood contain also a 
decreasing seed. One situation in which the decreasing rules 
can be applied is showed in table 2, others can be obtained 
symmetrically. 
 

s d a  s d a 
s s a ⇒ s d a 
a a a  a a a 

Table 2. Decreasing rules for one configuration of seeds in the 
neighbourhood of a particular cell. 

 
2.2 Cellular automata conversion  
 
The cellular automata evolves the seeds following the 
previously described rules. A special procedure of activating 
cells has also been designed in this work. This procedure 
allows the convergence of the automata toward a final 
configuration depending on the initial configuration chosen. 
This final configuration has to be translated into a neural 
network architecture. 
 
To relate the grid of the automata with an architecture of a 
neural network, the following meaning for a cell in the grid 
(x,y) is defined: if x≤n, -with n the number of input neurones- 
(x,y) represents a connection between the x-th input neuron and 
the y-th hidden neuron; if x>n, (x,y) represents a connection 
between the y-th hidden neuron and the (x-n)-th output neuron. 
The conversion procedure is then as follows: 
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1) Obtaining a binary matrix M.- The places of the grid in 
which a growing seed appear, are set to 1 and the places 
corresponding with inactive cells or decreasing seeds are 
set to 0. Thus, a Dim1xDim2 binary matrix, M=(mij), is 
obtained. 

2) Processing the binary matrix M.- In the above binary 
matrix the one value is interpreted as a connection, and the 
zero value as the absence of connection, the rows and 
columns in the matrix with values 0 are removed. A new 
and shorter matrix is obtained that has been called 
processed matrix (PM). 

3) Obtaining the feed-forward neural network.- For the PM 
matrix, if pmij =1 then a connection between the i-th input 
neuron and the j-th hidden neuron is created, or between 
the j-th hidden neuron and the (i-n)-th output neuron, as is 
previously described. If pmij=0, there do not exist 
connection between that neurones. 

 
2.3 Codification of initial configurations  
 
The rules governing the evolution of the automata are fixed, 
therefore the final configuration obtained by the automata is 
related only with its initial configuration. The initial 
configuration determines the number and position of the 
different seeds in the grid. In order to evolve initial 
configurations, a GA has been used. The size of the 
chromosomes in the GA corresponds with the number of seeds, 
and it codifies all the possible locations of seeds in the grid. 
Chromosomes have been codified in base b, where b is the 
number of rows in the grid: the number of inputs plus the 
number of outputs. Each seed is determined by a coordinate 
(x,y): 
 
1) The first coordinate could be represented by an unique gen, 

indicating the row in which the seed is located. 
2) The second coordinate will need more than one gen, if as 

usual the maximal number of hidden neurons is bigger than 
b. 

 
In this case, two genes have been used to codify the y 
coordinate, what allows a maximum of (b-1)xb+b hidden 
neurons. For instance, if there are 3 inputs and 2 outputs, the 
maximum size of the hidden layer is: 4x5+5 = 25. This could 
be a good estimation of the maximum number of neurons in 
the hidden layer, but any other consideration could be taken 
into account without modifying the proposed method. 
 
          x    y 

x1 y11 y12 
Figure 1. Codification of each seed location in the GA 

chromosome structure. 
 
The chromosome will have 3 genes (Fig. 1) for each seed to be 
placed in the grid, firstly the growing seeds are represented and 
finally the decreasing seeds. The number of seeds of each type 
has to be determined previously, and is a parameter of the 
method. If, for instance, there are five growing seeds, and five 
decreasing seeds, the size of the chromosome is 30, divided in 
ten trios of gens, the first five trios representing the growing 
seeds, and the final five trios representing the decreasing seeds. 
It is important to notice that the growing seeds belong to 
different types of seeds, while the decreasing seeds are all of 
the same type, as has been shown previously in the description 
of the automata rules. 

 
2.4 Dynamic of the System 
 
The global system is composed by three different modules: the 
GA, the CA and the module responsible of neural network 
training, as is shown in Fig. 2. 
 
 
 
 
 
 
 
 

 
Figure 2. System’s description. 

 
All the modules are related to make a general procedure of 
generating and optimising neural networks architectures. The 
GA module takes charge of generating initial configurations of 
the cellular automata, and to optimize these configurations 
from the information obtained from the training module. The 
cellular automata takes the initial configuration and generates a 
final configuration corresponding to a neural network 
architecture. A special procedure of activating the rules in the 
cellular automata has been defined in order to generate better, 
faster and meaningful final configurations. The procedure has 
to be complete to generate all possible final configurations. 
This procedure is as follows: 
 
1) The growing seeds are located in the grid. 
2) An expansion of the growing seeds takes place. This 

expansion consists on replicating each seed in turns, on its 
quadratic neighbourhood, in such a way that if a new seed 
has to be placed in a position previously occupied by 
another seed, the first one is replaced.  

3) The growing rules are applied until no more rules could be 
fired. 

4) The decreasing seeds are placed in the grid. If there are 
some other seeds in those places, they are replaced. 

5) The decreasing rules are applied until the final 
configuration is reached. 

 
Finally, the generated architecture has to be trained and 
evaluated for a particular problem and the error is used as the 
fitness value for the GA. The complete dynamic of the system 
is then as follows: 
 
1) Individuals of the population of the GA are randomly 

generated. 
2) Each chromosome is decodified and converted in the grid 

locations of a number of seeds previously specified. 
3) All the cells in the grid are deactivated. 
4) The CA is evolved following the previous procedure of 

rule activation. 
5) The final configuration of the CA is translated in a network 

topology. 
6) The neural network obtained is trained to solve the 

problem. 
7) Weights of the neural network are randomly initialised, 

and learned using the backpropagation learning method. A 
value is computed after the learning phase of the network, 
measuring the efficiency of the architecture. This value is 
composed by not only the error of the network, but some 

Genetic 
Algorth

m

Cellular 
Automat

a

Neural 
Network 
Training 
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other considerations could be taken into account to 
evaluate the efficiency of the network as the generalisation 
capability, the size of the network, the convergence 
velocity, etc.... This value is used as the fitness function of 
the chromosome. 

8) Steps 2 to 7 are repeated for all individuals in the 
population. New populations are generated by GA. 

 
The architectures optimization is carried out by the GA. 
However, the cellular automata is used as a constructive way 
of generating the architectures, avoiding direct encoding. 
 
 

3. EXPERIMENTAL RESULTS 
 
The method has been applied to determine the simplest feed-
forward neural network being able to approximate the logistic 
time series. The logistic map is given by Eq. 1. 
 
x(k+1)=λx(k)(1-x(k))     (1) 
 
When λ=3.97 and x(0)=0.5, the map describes a strongly 
chaotic time series. The use of the logistic map has two main 
advantages: 
 
1) The chaotic behaviour of the time series makes its 

prediction a non trivial task. 
2) The optimal network to predict the map is known. As the 

value of the map at instant t depends only on the value of 
the map at instant t-1, the optimal network has to consider 
only the input carrying the t-1 signal. 

 
The goal is to approximate the logistic map with a feed-
forward neural network. In this case, one output neuron, and 
one input neuron must be enough to obtain suitable 
approximations. However, in order to increase the complexity 
of the problem and to test the ability of the method to generate 
good architectures, five inputs have been taken into account: 
x(k-4),...,x(k). Thus, the system must find, in addition to the 
minimum number of hidden neurons to solve the problem, the 
most relevant input variables in the dynamic behaviour of the 
logistic time series, that is, consider only the x(k) input. Some 
experiments have been carried out varying randomly the 
location of the inputs, to probe the ability of the method to 
determine the most useful input (in this case the only useful 
input) independently of its position in the input layer. 
 
The problem to find the best architecture of neural network has 
been formulated in three different ways: 
 
1) First, the goal was to find the neural network architecture 

that provides the best approximation of the logistic time 
series when the training period is fixed to 1000 learning 
cycles. In that case, the fitness function maximised by the 
GA had the expression given in Eq. 2. 

E
f

1
1 =      (2) 

where E is the mean square error produced by the network 
in the training phase. 

2) In order to find the optimal neural network architecture is 
necessary to establish an arrangement between the training 
error produced by the network and the number of 
connections (number of neurones) in the network. In the 

context of neural networks is interesting to obtain the 
simplest network being able to achieve adequate training 
errors. Hence, the number of connections has been 
introduced in the fitness function. In the second case, the 
goal has been to find the simplest architecture of neural 
network producing the best approximations of the logistic 
time series when the network is trained during 1000 
learning cycles. The fitness function has adopted the 
expression given en Eq. 3. 

ncE
f

2

1
2

⋅
=       (3) 

where E is the mean square error produced by the network 
in the training phase and nc is the number of connections in 
the network. 

3) The number of connections in the network must be 
measured in order to find the simplest architecture. 
However, the complexity of the network depends also on 
the number of learning cycles. A neural network 
architecture with few connections may required a long 
number of learning cycles to reach appropriate 
approximations depending on the placement of the 
connections. In this third case the goal has been to find the 
neural network architecture requiring the least 
computational effort to reach a level of the mean square 
error. That computational effort depends on the number of 
connections and on the number of learning cycles. Hence, 
both are indirectly incorporated in the fitness function. 
That function is defined as follows: a maximum number of 
learning cycles is defined as 15.000 and a level for the 
training error is also set to 1.5x10-4. If the network reaches 
the above level of error, the procedure is then stopped and 
the fitness function is evaluated as described in Eq. 4. 

n
f

1
3 =      (4) 

where n is a natural number computed by the sum of the 
number of connections that have to be changed for each 
learning cycle. That value depends on the number of 
connections and on the learning cycles. If the network ends 
with all the learning cycles without reaching the minimal 
allowed error, a maximum value of n is associated to that 
network. 

 
For the above fitness functions, two different approaches have 
been tested: a classical direct codification and the new method 
proposed in this work, which are described in the next. 
  
3.1 Results with direct encoding  
 
Five inputs and a maximum of 25 hidden neurons have been 
considered. The codification consists of a binary matrix 
representing the existence of connection between an input 
neuron and a hidden neuron. In this case de dimension of the 
matrix is 5x25. This binary matrix constitutes the chromosome 
of the individual that represents the architecture, therefore the 
size of chromosomes is 120. The results of the evolution of a 
GA with this codification are shown in table 3. 
 

Fitness Architec. Connec. Error 
f1 Figure 3 93 0.000878 
f2 Figure 5 4 0.001248 
f3 Figure 4 19 0.001489 

4



Table 3. Results for direct encoding. 
 
In the first fitness function (Eq. 1) only the error of the network 
has been taken into account. In this case, the complexity of the 
architecture generated is great, 24 neurons in the hidden layer, 
because there is no selective pressure toward less complex 
architectures (Fig. 3). However, architectures with a better 
error value (9.8x10-4 toward 1.4x10-3) have been achieved. The 
second fitness function (Eq. 2) gives much more importance to 
the number of the connections in the architecture, in this case 
the direct encoding is able to generate the optimal architecture 
(Fig. 5) because for the logistic map, all the architectures 
considered could reach an acceptable error value. If the error 
has few importance in the fitness function, the pressure is drive 
only toward simple architectures. However, in general, this 
fitness function will not be able to solve the problem 
efficiently because in most of the cases short architectures are 
unable to solve the problems, and bigger architectures are not 
being generated. 
 

Input Hidden 
t-5 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 
t-4 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1 
t-3 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0  
t-2 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1  
t-1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1  

Figure 3. Best neural topology obtained with direct encoding 
using f1 as fitness function. 

 
The last fitness function (Eq. 3) has been introduced to balance 
both complexity and efficiency, giving more importance to the 
efficiency than to the complexity and error. In this case the 
direct encoding produces a complex architecture (Fig. 4). 
 

 
Figure 4. Best neural topology obtained with direct encoding 

using f3 as fitness function. 
 
3.2 Results with cellular automata evolution  
 
Since five inputs and one output have been considered, the 
seeds have to be codified in base 5. For simplicity, all the 
hidden neurons are considered connected with the only output 
neuron, this reduces the size of the chromosome in one unit 
without loosing generality. This assumption can be done only 
if there is a unique output neuron. The size of the grid for the 
automata is 5x25, following the previous descriptions. 
 
Two sets of experiments have been realised, with three 
growing seeds and three decreasing seeds; and five growing 
seeds and five decreasing seeds respectively. In the first case 
the size of the chromosomes was 18=3x3+3x3 and in the 
second case 30=3x5+3x5. 
 
The GA is composed of a population of 100 individuals, which 
are initially randomly generated. This population is iterated for 

100 generations in order to maximise the fitness functions 
previously described.  
 
In table 4 are shown the results of all the experiments for CA 
evolution. They show the number of seeds used, the best 
architecture founded, the number of connections of the 
architecture and the error achieved by the network. Lets notice 
that error values for the experiments are slightly different, in 
spite that they represent the same architecture. This is because 
error values are computed as the average of the error over a set 
of randomly initialised networks, and the final error depends 
on the initial weights assignations. 

 
Fitness Seeds Architec. Connec. Error 

f1 3 and 3 Figure 6.a 59 0.001006 
f1 5 and 5 Figure 6.b 67 0.000986 
f2 3 and 3 Figure 7 5 0.001255 
f2 5 and 5 Figure 7 5 0.001375 
f3 3 and 3 Figure 5 4 0.001429 
f3 5 and 5 Figure 5 4 0.001440 
Table 4. Results for cellular automata evolution. 

 
In the experiments for f1 function the best networks have 59 
and 67 connections respectively (Fig. 6). This means that the 
CA encoding has been able to find significant less complex 
networks, with similar error values, that with direct encoding. 
In any case, this fitness function is no able to reduce the 
complexity of the network, because the generated networks 
behave enough well in terms of error. 
 

 
Figure 5. Best neural topology obtained with CA encoding 

 
Inp. Hidden  Inp. Hidden 
t-5 1 1 1 1 1 1 1 1 1 1 1 1  t-5 1 1 1 1 1 1 1 1 1 1 1 1
t-4 0 0 1 1 1 1 1 1 1 1 1 1  t-4 1 1 1 1 1 1 1 1 1 1 1 1
t-3 0 1 1 1 1 1 1 1 1 1 1 1  t-3 1 1 1 1 1 1 1 1 1 1 1 1
t-2 0 0 1 1 1 1 1 1 1 1 1 1  t-2 1 1 1 1 1 1 1 1 1 1 1 1
t-1 0 0 1 1 1 1 1 1 1 1 1 1  t-1 1 1 1 1 1 1 1 1 0 0 1 1

 (a) Seeds 3-3    (b) Seeds 5-5 
Figure 6. Best neural topology obtained with CA encoding, 

using f1. 
 
In Fig. 5 is represented the architecture found for experiments 
with f3 fitness function. In all these experiments the proposed 
method converges to the same architecture. This neural 
network is the best possible architecture to solve the problem. 
It has the less computational cost able to solve the problem 
efficiently, and an error lower than 1.5x10-3. In addition, this 
architecture takes into account the only relevant input to the 
problem (x(t-1)). Here, the reduction in complexity, compared 
with direct encoding is also significative, not only because of 
the less number of connections, but because the CA encoding 
has been able to detect just the significative input, and to 
consider it in the solution. Lets notice that to find the 
significant inputs is, in many cases, an important problem to be 
solved. 
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Figure 7. Best neural topology obtained with CA encoding 

using f2. 
 
In the case of the second fitness function, the best architecture 
is not achieved, however a very similar one is found (Fig. 7). 
The irrelevant x(t-4) input is considered, and the final 
architecture has only one additional connection. 
 
 

4. DISCUSSION AND CONCLUSIONS 
 
The election of good neural networks architectures is an 
important step in many problems where there is few 
knowledge about the problem itself. Evolutionary computation 
techniques are good approaches for automatically generate 
those good architectures. However the codification of the 
network is a crucial point in the success of the method. Direct 
codification’s become inefficient from a practical point of 
view, making bigger and redundant the search space. To solve 
this problem an indirect encoding has to be used. 
 
Indirect encoding is driven to reduce the search space in such a 
way that similar solutions are eliminated and represented by 
only one representative. In these cases, the codification makes 
the method able to find better architectures.  
 
Cellular Automata are good candidates for non-direct 
codification’s. The constructive representation introduced in 
this work solves some of the problems for non-direct 
codification’s. The final representations has a reduced size and 
could be controlled by the number of seeds used. The results 
with the logistic map show how the complexity of the achieved 
network could be reduced in spite of the fitness function used. 
This method has also been able to find the appropriate network 
for the logistic map, identifying the only useful input. This 
result could have a great practical interest because some times 
the identification or importance of the inputs is a primordial 
step in the solution of a problem. 
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