

Neural Network architectures design by Cellular Automata evolution

Inés M. Galván

Pedro Isasi
José Manuel Molina

Araceli Sanchis

Departamento de Informática
Universidad CarlosIII de Madrid

28911, Leganés, Madrid.
E-mail: igalvan@inf.uc3m.es

ABSTRACT

The design of the architecture is a crucial step in the successful
application of a neural network. However, the architecture
design is basically, in most cases, a human experts job. The
design depends heavily on both, the expert experience and on a
tedious trial-and-error process. Therefore, the development of
automatic methods to determine the architecture of feed-
forward neural networks is a field of interest in the neural
network community. These methods are generally based on
search techniques, as genetic algorithms, simulated annealing
or evolutionary strategies. Most of the designed methods are
based on direct representation of the parameters of the
network. This representation does not allow scalability, so to
represent large architectures very large structures are required.
In this work, an indirect constructive encoding scheme is
proposed to find optimal architectures of feed-forward neural
networks. This scheme is based on cellular automata
representations in order to increase the scalability of the
method.

Keywords: Neural Networks, Cellular Automata, Machine
Learning, Evolutionary Computation.

1. INTRODUCTION

The design of neural network architectures is crucial in the
successful application because the architecture may strongly
drive the neural network's information processing abilities. In
most of the cases exist a large number of architectures of feed-
forward neural networks set suitable to solve an approximation
problem. Unfortunately, the architecture design is still a human
experts job. It depends heavily on the expert experience and on
a tedious trial-and-error process. There is no systematic way to
design a near optimal architecture automatically for a given
task.

Designing the optimal architecture can be formulated as a
search problem in the architectures space, where each point
represents an architecture. The search space of all possible
architectures is very large, and the task of finding the simplest
architecture may be an arduous and mostly a random task.

In last years, many works have been centered toward automatic
resolution of the design of neural networks architecture [1, 2,
3, 4, 5]. Two representation approaches exist to find the

optimum net architecture using Genetic Algorithm (GA): one
based on the complete representation of all the possible
connections and other based on an indirect representation of
the architecture. The first one is called Direct Encoding
Method, and is based on the codification of the complete
network (connections matrix) into the chromosome of the GA,
and starts with Ash’s work [6] and continues with other works,
including [7, 8, 9, 10]. The direct representation is relatively
simple and straightforward to implement. However, it does not
scale well since large architectures require very large
chromosomes to be represented. It is specially suitable for
small and problem dependent particular architectures. In these
cases, some unpredictable designs could be reached [9].
However, the capabilities of direct encoding for larger
architectures are limited, remaining to be proven whether it can
scale up to more complex tasks, because large architectures
requires much larger chromosomes. This could end in a too
huge space search that could make the method impossible in
practice.

In order to reduce the length of the genotype, the search space,
and to make the problem more scalable, indirect encoding
scheme has been proposed in last years. An indirect scheme
under a constructive algorithm, by the other hand, starts with a
minimal architecture and new levels, neurons and connections
are added, step by step, using some sets of rules. The rules
and/or some initial conditions are codified into a chromosome
of a GA. In this way, an evolution towards good constructive
rules is achieved, and there is no evolution of architectures by
themselves. The first indirect encoding consisted in the
codification of different connectivity patterns as a whole,
instead of each connection particularly [1]. This reduces the
search space, limiting the possible pattern connections to those
which follows some predetermined rules. These limitations in
the connections do not affect to the power of the architecture,
because is well known that many connectivity patterns have
similar learning abilities. Although the parametric encoding
can reduce the length of the binary codification of neural
networks architectures, still has similar scalability problems as
the direct encoding. One of the works to avoid the scalability
problems was from Kitano [11], introducing a constructive
scheme based on grammars. The solution proposed by Kitano
was to encode networks as grammars, and let the GA to evolve
grammars instead of networks architectures. Other works have
considered some variations of Kitano's rule descriptions using
recursive equations to model the growth of connection matrix

1

Referencia bibliográfica
Published in:
4th Conference of Systemics Cybernetics and Informatics, 2000. Vol. III. P. 457-462.

[12]. In this case, the coefficients of some fixed equations were
codified as chromosomes and evolved by a GA.

The grammatical approach is not the only proposed
representation method. Merril and Port [13] introduce a fractal
representation for encoding the architectures, arguing that it is
more related with biological ideas than constructive
algorithms. They used fast simulated annealing for
architectures evolution.

In this work, an indirect constructive encoding scheme, based
on Cellular Automata (CA), is proposed to find the optimal
architecture of a feed-forward neural network. In this scheme,
positions of several seeds in a bidimensional grid are
represented in the chromosome. These seeds are used as the
initial configuration of a cellular automata which is translated
into a feed-forward neural network through a growing
procedure as the cellular automata is evolved. Thus, the
chromosome length is significantly reduced and the scalability
of the method is increased.

This method has been proven to automatically design the
optimal architecture of a neural network to forecast one step
ahead in a time series. The well known logistic chaotic time
series has been used for prediction. The special features of this
series makes the problem a good test bed in order to prove the
ability of the method to generate good architectures.

2. CELLULAR AUTOMATA REPRESENTING FEED-
FORWARD NEURAL NETWORKS

Cellular Automata consist of an n-dimensional grid of M
machines, called cells, that could be in different states.
Usually, the dimension of the lattice is one or two, and the
states of the cells are binary. The cells can change their state
depending on the state of the cells in their neighbourhood. This
modification is specified through rules. All the cells change
their state following same rules. The state of each cell in the
lattice in some instant, determines what is called configuration.
The evolution of the CA is determined by the application of the
rules over a configuration to obtain a new configuration and so
on. CA have been mainly studied as mathematical models for
many physical systems [14].

The features of a CA depend on the rules that govern its
behaviour. Some works have been done to automatically
evolve the rules of cellular automata. In 1988, Packard [15]
used a GA to evolve CA for simple tasks. More recently other
techniques as Genetic Programming have been used for the
same problem [16]. More difficult problems, as the density-
classification problem [17,18], and the synchronisation
problem [19] have proven the capabilities of GA to find CA's
able to solve complex problems.

2.1 Cellular automata description

For generating neural networks architectures, a bi-dimensonal
CA has been proposed. The size of the bi-dimensional grid of
the automata depends on the number of input and output
neurons given by the problem and on the maximum number of
hidden neurons to be considered. Let Dimx be the number of
rows in the grid, its value is equal to the number of input
neurons plus the number of output neurons in the problem. On
the other hand, Dimy is the number of columns in the grid and

corresponds with the maximum number of hidden neurons to
be considered. Each cell in the grid could be in different states,
active, inactive, or occupied by a seed. Two different kinds of
seeds have been introduced: growing seeds and decreasing
seeds. The growing seeds could be different (s1, s2,..., sm),
while the decreasing seeds are all the same (d). The number of
seeds of each type is a parameter of the method. Each seed
type corresponds with a different type of rule, so there are two
rules called growing rule and decreasing rule respectively.

Growing rule: This type of rule reproduces a particular
growing seed when there are at least three identical growing
seeds in its neighbourhood. There are different configurations,
growing seeds located in: rows, columns, or in a corner of the
neighbourhood (see table 1). In tables 1 and 2 some of those
rules are shown (the others are symmetrical). Here s is a
specific growing seed, d is a decreasing seed, i is an inactive
state for the cell and a means that the cell could be in any state
or contains any type of seed (even a decreasing seed).

s s s s s s
a i a ⇒ a s a
a a a a a a

s s a s s a
s i a ⇒ s s a
a a a a a a

Table 1. Growing rules for some configuration of seeds in the
neighbourhood of a particular cell.

Decreasing rules: The growing rules previously specified
allow to obtain feed-forward neural networks with a large
number of connections. In order to remove connections in the
network, decreasing rules are included in the system. These
rules deactivate a cell in the grid when the cell has a decreasing
seed and two cells in a row of its neighbourhood contain also a
decreasing seed. One situation in which the decreasing rules
can be applied is showed in table 2, others can be obtained
symmetrically.

s d a s d a
s s a ⇒ s d a
a a a a a a

Table 2. Decreasing rules for one configuration of seeds in the
neighbourhood of a particular cell.

2.2 Cellular automata conversion

The cellular automata evolves the seeds following the
previously described rules. A special procedure of activating
cells has also been designed in this work. This procedure
allows the convergence of the automata toward a final
configuration depending on the initial configuration chosen.
This final configuration has to be translated into a neural
network architecture.

To relate the grid of the automata with an architecture of a
neural network, the following meaning for a cell in the grid
(x,y) is defined: if x≤n, -with n the number of input neurones-
(x,y) represents a connection between the x-th input neuron and
the y-th hidden neuron; if x>n, (x,y) represents a connection
between the y-th hidden neuron and the (x-n)-th output neuron.
The conversion procedure is then as follows:

2

1) Obtaining a binary matrix M.- The places of the grid in
which a growing seed appear, are set to 1 and the places
corresponding with inactive cells or decreasing seeds are
set to 0. Thus, a Dim1xDim2 binary matrix, M=(mij), is
obtained.

2) Processing the binary matrix M.- In the above binary
matrix the one value is interpreted as a connection, and the
zero value as the absence of connection, the rows and
columns in the matrix with values 0 are removed. A new
and shorter matrix is obtained that has been called
processed matrix (PM).

3) Obtaining the feed-forward neural network.- For the PM
matrix, if pmij =1 then a connection between the i-th input
neuron and the j-th hidden neuron is created, or between
the j-th hidden neuron and the (i-n)-th output neuron, as is
previously described. If pmij=0, there do not exist
connection between that neurones.

2.3 Codification of initial configurations

The rules governing the evolution of the automata are fixed,
therefore the final configuration obtained by the automata is
related only with its initial configuration. The initial
configuration determines the number and position of the
different seeds in the grid. In order to evolve initial
configurations, a GA has been used. The size of the
chromosomes in the GA corresponds with the number of seeds,
and it codifies all the possible locations of seeds in the grid.
Chromosomes have been codified in base b, where b is the
number of rows in the grid: the number of inputs plus the
number of outputs. Each seed is determined by a coordinate
(x,y):

1) The first coordinate could be represented by an unique gen,

indicating the row in which the seed is located.
2) The second coordinate will need more than one gen, if as

usual the maximal number of hidden neurons is bigger than
b.

In this case, two genes have been used to codify the y
coordinate, what allows a maximum of (b-1)xb+b hidden
neurons. For instance, if there are 3 inputs and 2 outputs, the
maximum size of the hidden layer is: 4x5+5 = 25. This could
be a good estimation of the maximum number of neurons in
the hidden layer, but any other consideration could be taken
into account without modifying the proposed method.

 x y

x1 y11 y12
Figure 1. Codification of each seed location in the GA

chromosome structure.

The chromosome will have 3 genes (Fig. 1) for each seed to be
placed in the grid, firstly the growing seeds are represented and
finally the decreasing seeds. The number of seeds of each type
has to be determined previously, and is a parameter of the
method. If, for instance, there are five growing seeds, and five
decreasing seeds, the size of the chromosome is 30, divided in
ten trios of gens, the first five trios representing the growing
seeds, and the final five trios representing the decreasing seeds.
It is important to notice that the growing seeds belong to
different types of seeds, while the decreasing seeds are all of
the same type, as has been shown previously in the description
of the automata rules.

2.4 Dynamic of the System

The global system is composed by three different modules: the
GA, the CA and the module responsible of neural network
training, as is shown in Fig. 2.

Figure 2. System’s description.

All the modules are related to make a general procedure of
generating and optimising neural networks architectures. The
GA module takes charge of generating initial configurations of
the cellular automata, and to optimize these configurations
from the information obtained from the training module. The
cellular automata takes the initial configuration and generates a
final configuration corresponding to a neural network
architecture. A special procedure of activating the rules in the
cellular automata has been defined in order to generate better,
faster and meaningful final configurations. The procedure has
to be complete to generate all possible final configurations.
This procedure is as follows:

1) The growing seeds are located in the grid.
2) An expansion of the growing seeds takes place. This

expansion consists on replicating each seed in turns, on its
quadratic neighbourhood, in such a way that if a new seed
has to be placed in a position previously occupied by
another seed, the first one is replaced.

3) The growing rules are applied until no more rules could be
fired.

4) The decreasing seeds are placed in the grid. If there are
some other seeds in those places, they are replaced.

5) The decreasing rules are applied until the final
configuration is reached.

Finally, the generated architecture has to be trained and
evaluated for a particular problem and the error is used as the
fitness value for the GA. The complete dynamic of the system
is then as follows:

1) Individuals of the population of the GA are randomly

generated.
2) Each chromosome is decodified and converted in the grid

locations of a number of seeds previously specified.
3) All the cells in the grid are deactivated.
4) The CA is evolved following the previous procedure of

rule activation.
5) The final configuration of the CA is translated in a network

topology.
6) The neural network obtained is trained to solve the

problem.
7) Weights of the neural network are randomly initialised,

and learned using the backpropagation learning method. A
value is computed after the learning phase of the network,
measuring the efficiency of the architecture. This value is
composed by not only the error of the network, but some

Genetic
Algorth

m

Cellular
Automat

a

Neural
Network
Training

3

other considerations could be taken into account to
evaluate the efficiency of the network as the generalisation
capability, the size of the network, the convergence
velocity, etc.... This value is used as the fitness function of
the chromosome.

8) Steps 2 to 7 are repeated for all individuals in the
population. New populations are generated by GA.

The architectures optimization is carried out by the GA.
However, the cellular automata is used as a constructive way
of generating the architectures, avoiding direct encoding.

3. EXPERIMENTAL RESULTS

The method has been applied to determine the simplest feed-
forward neural network being able to approximate the logistic
time series. The logistic map is given by Eq. 1.

x(k+1)=λx(k)(1-x(k)) (1)

When λ=3.97 and x(0)=0.5, the map describes a strongly
chaotic time series. The use of the logistic map has two main
advantages:

1) The chaotic behaviour of the time series makes its

prediction a non trivial task.
2) The optimal network to predict the map is known. As the

value of the map at instant t depends only on the value of
the map at instant t-1, the optimal network has to consider
only the input carrying the t-1 signal.

The goal is to approximate the logistic map with a feed-
forward neural network. In this case, one output neuron, and
one input neuron must be enough to obtain suitable
approximations. However, in order to increase the complexity
of the problem and to test the ability of the method to generate
good architectures, five inputs have been taken into account:
x(k-4),...,x(k). Thus, the system must find, in addition to the
minimum number of hidden neurons to solve the problem, the
most relevant input variables in the dynamic behaviour of the
logistic time series, that is, consider only the x(k) input. Some
experiments have been carried out varying randomly the
location of the inputs, to probe the ability of the method to
determine the most useful input (in this case the only useful
input) independently of its position in the input layer.

The problem to find the best architecture of neural network has
been formulated in three different ways:

1) First, the goal was to find the neural network architecture

that provides the best approximation of the logistic time
series when the training period is fixed to 1000 learning
cycles. In that case, the fitness function maximised by the
GA had the expression given in Eq. 2.

E
f

1
1 = (2)

where E is the mean square error produced by the network
in the training phase.

2) In order to find the optimal neural network architecture is
necessary to establish an arrangement between the training
error produced by the network and the number of
connections (number of neurones) in the network. In the

context of neural networks is interesting to obtain the
simplest network being able to achieve adequate training
errors. Hence, the number of connections has been
introduced in the fitness function. In the second case, the
goal has been to find the simplest architecture of neural
network producing the best approximations of the logistic
time series when the network is trained during 1000
learning cycles. The fitness function has adopted the
expression given en Eq. 3.

ncE
f

2

1
2

⋅
= (3)

where E is the mean square error produced by the network
in the training phase and nc is the number of connections in
the network.

3) The number of connections in the network must be
measured in order to find the simplest architecture.
However, the complexity of the network depends also on
the number of learning cycles. A neural network
architecture with few connections may required a long
number of learning cycles to reach appropriate
approximations depending on the placement of the
connections. In this third case the goal has been to find the
neural network architecture requiring the least
computational effort to reach a level of the mean square
error. That computational effort depends on the number of
connections and on the number of learning cycles. Hence,
both are indirectly incorporated in the fitness function.
That function is defined as follows: a maximum number of
learning cycles is defined as 15.000 and a level for the
training error is also set to 1.5x10-4. If the network reaches
the above level of error, the procedure is then stopped and
the fitness function is evaluated as described in Eq. 4.

n
f

1
3 = (4)

where n is a natural number computed by the sum of the
number of connections that have to be changed for each
learning cycle. That value depends on the number of
connections and on the learning cycles. If the network ends
with all the learning cycles without reaching the minimal
allowed error, a maximum value of n is associated to that
network.

For the above fitness functions, two different approaches have
been tested: a classical direct codification and the new method
proposed in this work, which are described in the next.

3.1 Results with direct encoding

Five inputs and a maximum of 25 hidden neurons have been
considered. The codification consists of a binary matrix
representing the existence of connection between an input
neuron and a hidden neuron. In this case de dimension of the
matrix is 5x25. This binary matrix constitutes the chromosome
of the individual that represents the architecture, therefore the
size of chromosomes is 120. The results of the evolution of a
GA with this codification are shown in table 3.

Fitness Architec. Connec. Error
f1 Figure 3 93 0.000878
f2 Figure 5 4 0.001248
f3 Figure 4 19 0.001489

4

Table 3. Results for direct encoding.

In the first fitness function (Eq. 1) only the error of the network
has been taken into account. In this case, the complexity of the
architecture generated is great, 24 neurons in the hidden layer,
because there is no selective pressure toward less complex
architectures (Fig. 3). However, architectures with a better
error value (9.8x10-4 toward 1.4x10-3) have been achieved. The
second fitness function (Eq. 2) gives much more importance to
the number of the connections in the architecture, in this case
the direct encoding is able to generate the optimal architecture
(Fig. 5) because for the logistic map, all the architectures
considered could reach an acceptable error value. If the error
has few importance in the fitness function, the pressure is drive
only toward simple architectures. However, in general, this
fitness function will not be able to solve the problem
efficiently because in most of the cases short architectures are
unable to solve the problems, and bigger architectures are not
being generated.

Input Hidden
t-5 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1
t-4 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1
t-3 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0
t-2 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1
t-1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1

Figure 3. Best neural topology obtained with direct encoding
using f1 as fitness function.

The last fitness function (Eq. 3) has been introduced to balance
both complexity and efficiency, giving more importance to the
efficiency than to the complexity and error. In this case the
direct encoding produces a complex architecture (Fig. 4).

Figure 4. Best neural topology obtained with direct encoding

using f3 as fitness function.

3.2 Results with cellular automata evolution

Since five inputs and one output have been considered, the
seeds have to be codified in base 5. For simplicity, all the
hidden neurons are considered connected with the only output
neuron, this reduces the size of the chromosome in one unit
without loosing generality. This assumption can be done only
if there is a unique output neuron. The size of the grid for the
automata is 5x25, following the previous descriptions.

Two sets of experiments have been realised, with three
growing seeds and three decreasing seeds; and five growing
seeds and five decreasing seeds respectively. In the first case
the size of the chromosomes was 18=3x3+3x3 and in the
second case 30=3x5+3x5.

The GA is composed of a population of 100 individuals, which
are initially randomly generated. This population is iterated for

100 generations in order to maximise the fitness functions
previously described.

In table 4 are shown the results of all the experiments for CA
evolution. They show the number of seeds used, the best
architecture founded, the number of connections of the
architecture and the error achieved by the network. Lets notice
that error values for the experiments are slightly different, in
spite that they represent the same architecture. This is because
error values are computed as the average of the error over a set
of randomly initialised networks, and the final error depends
on the initial weights assignations.

Fitness Seeds Architec. Connec. Error

f1 3 and 3 Figure 6.a 59 0.001006
f1 5 and 5 Figure 6.b 67 0.000986
f2 3 and 3 Figure 7 5 0.001255
f2 5 and 5 Figure 7 5 0.001375
f3 3 and 3 Figure 5 4 0.001429
f3 5 and 5 Figure 5 4 0.001440
Table 4. Results for cellular automata evolution.

In the experiments for f1 function the best networks have 59
and 67 connections respectively (Fig. 6). This means that the
CA encoding has been able to find significant less complex
networks, with similar error values, that with direct encoding.
In any case, this fitness function is no able to reduce the
complexity of the network, because the generated networks
behave enough well in terms of error.

Figure 5. Best neural topology obtained with CA encoding

Inp. Hidden Inp. Hidden
t-5 1 1 1 1 1 1 1 1 1 1 1 1 t-5 1 1 1 1 1 1 1 1 1 1 1 1
t-4 0 0 1 1 1 1 1 1 1 1 1 1 t-4 1 1 1 1 1 1 1 1 1 1 1 1
t-3 0 1 1 1 1 1 1 1 1 1 1 1 t-3 1 1 1 1 1 1 1 1 1 1 1 1
t-2 0 0 1 1 1 1 1 1 1 1 1 1 t-2 1 1 1 1 1 1 1 1 1 1 1 1
t-1 0 0 1 1 1 1 1 1 1 1 1 1 t-1 1 1 1 1 1 1 1 1 0 0 1 1

 (a) Seeds 3-3 (b) Seeds 5-5
Figure 6. Best neural topology obtained with CA encoding,

using f1.

In Fig. 5 is represented the architecture found for experiments
with f3 fitness function. In all these experiments the proposed
method converges to the same architecture. This neural
network is the best possible architecture to solve the problem.
It has the less computational cost able to solve the problem
efficiently, and an error lower than 1.5x10-3. In addition, this
architecture takes into account the only relevant input to the
problem (x(t-1)). Here, the reduction in complexity, compared
with direct encoding is also significative, not only because of
the less number of connections, but because the CA encoding
has been able to detect just the significative input, and to
consider it in the solution. Lets notice that to find the
significant inputs is, in many cases, an important problem to be
solved.

5

Figure 7. Best neural topology obtained with CA encoding

using f2.

In the case of the second fitness function, the best architecture
is not achieved, however a very similar one is found (Fig. 7).
The irrelevant x(t-4) input is considered, and the final
architecture has only one additional connection.

4. DISCUSSION AND CONCLUSIONS

The election of good neural networks architectures is an
important step in many problems where there is few
knowledge about the problem itself. Evolutionary computation
techniques are good approaches for automatically generate
those good architectures. However the codification of the
network is a crucial point in the success of the method. Direct
codification’s become inefficient from a practical point of
view, making bigger and redundant the search space. To solve
this problem an indirect encoding has to be used.

Indirect encoding is driven to reduce the search space in such a
way that similar solutions are eliminated and represented by
only one representative. In these cases, the codification makes
the method able to find better architectures.

Cellular Automata are good candidates for non-direct
codification’s. The constructive representation introduced in
this work solves some of the problems for non-direct
codification’s. The final representations has a reduced size and
could be controlled by the number of seeds used. The results
with the logistic map show how the complexity of the achieved
network could be reduced in spite of the fitness function used.
This method has also been able to find the appropriate network
for the logistic map, identifying the only useful input. This
result could have a great practical interest because some times
the identification or importance of the inputs is a primordial
step in the solution of a problem.

5. REFERENCES

[1] S. Harp, Samad T. and Guha A. Towards the Genetic

Synthesis of Neural Networks. Proceedings of the Third
International Conference on Genetic Algorithms and their
applications, pp 360-369, San Mateo, CA, USA, 1989.

[2] G.F. Miller, P.M. Todd and S.U. Hegde. Designing neural
networks using genetic algorithms. In Proc. of the third
international conference on genetic algorithms and their
applications, pp 379-384, San Mateo, CA, USA, 1989.

[3] S. Harp, Samad T. and Guha A. Designing Application-
Specific Neural Networks using the Genetic Algorithm,
Advances in Neural Information Processing Systems, vol2,
447-454, 1990.

[4] F. Gruau. Genetic Synthesis of Boolean Neural Networks
with a Cell Rewriting Developmental Process. Proc. of
COGANN-92 International Workshop on Combinations of

Genetic Algorithms and Neural Networks, pp. 55-74, IEEE
Computer Society Press, 1990.

[5] F. Gruau. Automatic Definition of Modular Neural
Networks. Adaptive Behaviour, vol. 2, 3, 151-183, 1995.

[6] T. Ash. Dynamic Node Creation in Backpropagation
Networks ICS Report 8901, The Institute for Cognitive
Science, University of California, San Diego (Saiensu-sh,
1988), 1988.

[7] D.B. Fogel, Fogel L.J. and Porto V.W. Evolving Neural
Network, Biological Cybernetics, 63, 487-493, 1990.

[8] T.P. Caudell and Dolan C.P. Parametric Connectivity:
Training of Constrained Networks using Genetic
Algorithms, Proc. of the third International Conference on
Genetic Algorithms and their Applications, 370-374.
Morgan Kaufman, 1989.

[9] J.D. Schaffer, R.A. Caruana and L.J. Eshelman. Using
genetic search to exploit the emergent behaviour of neural
networks. Physica D, 42, pp 244-248, 1990.

[10] E. Alba, J.F. Aldana and J.M. Troya. Fully automatic
ANN design: A genetic approach. In Proc. of International
workshop on artificial neural networks, pp 179-184, 1993.

[11] H. Kitano. Designing Neural Networks using Genetic
Algorithms with Graph Generation System, Complex
Systems, 4, 461-476, 1990.

[12] E. Mjolsness, D.H. Sharp and B.K. Alpert. Scaling
machine learning and genetic neural nets. Advances in
applied mathematic, 10, pp 137-163, 1989.

[13] J.W.L. Merril and R.F. Port. Fractally configured Neural
Networks. Neural Networks, 4, 53-60, 1991.

[14] S. Wolfram. Theory and applications of cellular
automata. World Scientific, Singapore, 1988.

[15] 15 N.H. Packard. Dynamic patterns in complex systems.
Chapter Adaptation toward the edge of chaos, pp 293-301.
World Scientific, Singapore, 1988.

[16] J.R. Koza. Genetic programming: On the programming
of computers by means of natural selection. MIT Press,
Cambridge, MA, 1992.

[17] R. Das, M. Mitchell and J.P. Crutchfield. A genetic
algorithm discovers particle based computation in cellular
automata. In Parallel problem Solving from Nature, Vol
866 of Lecture Notes in computer Science, pp 244-353,
Berlin, 1994.

[18] J.P. Crutchfield, M. Mitchell. The evolution of emergent
computation. In Proc. Of the national academy of sciences,
vol 92, 23, 1995.

[19] R. Das, J.P. Crutchfield, M. Mitchell and J.E. Hanson.
Evolving globally synchronised cellular automata. In Proc.
of the Sixth International Conference on genetic
Algorithms, pp 336-343, San Francisco, CA, 1995.

6

