868 research outputs found

    Autophagy in plants and algae

    Get PDF
    Autophagy is a major cellular degradation pathway in which materials are delivered to the vacuole in double-membrane vesicles known as autophagosomes, broken down, and recycled (Li and Vierstra, 2012; Liu and Bassham, 2012). In photosynthetic organisms, the pathway is strongly activated by biotic and abiotic stresses, including nutrient limitation, oxidative, salt and drought stress and pathogen infection, and during senescence (Perez-Perez et al., 2012; Lv et al., 2014). Mutation of genes required for autophagy causes hypersensitivity to stress, indicating that autophagy is important for tolerance of multiple stresses. While autophagy is often non-selective, a growing number of examples of selectivity are now evident, in which specific cargos are recruited into autophagosomes via cargo receptors (Floyd et al., 2012; Li and Vierstra, 2012). In this Research Topic, a series of original research articles and reviews highlight areas of current focus in plant and algal autophagy research, including mechanisms and cargos of selective autophagy, lipid degradation, and metabolic and physiological consequences of the autophagy pathway

    Autophagy is activated and involved in cell death with participation of cathepsins during stress-induced microspore embryogenesis in barley

    Get PDF
    Microspores are reprogrammed towards embryogenesis by stress. Many microspores die after this stress, limiting the efficiency of microspore embryogenesis. Autophagy is a degradation pathway that plays critical roles in stress response and cell death. In animals, cathepsins have an integral role in autophagy by degrading autophagic material; less is known in plants. Plant cathepsins are papain-like C1A cysteine proteases involved in many physiological processes, including programmed cell death. We have analysed the involvement of autophagy in cell death, in relation to cathepsin activation, during stress-induced microspore embryogenesis in Hordeum vulgare. After stress, reactive oxygen species (ROS) and cell death increased and autophagy was activated, including HvATG5 and HvATG6 up-regulation and increase of ATG5, ATG8, and autophagosomes. Concomitantly, cathepsin L/F-, B-, and H-like activities were induced, cathepsin-like genes HvPap-1 and HvPap-6 were up-regulated, and HvPap-1, HvPap-6, and HvPap-19 proteins increased and localized in the cytoplasm, resembling autophagy structures. Inhibitors of autophagy and cysteine proteases reduced cell death and promoted embryogenesis. The findings reveal a role for autophagy in stress-induced cell death during microspore embryogenesis, and the participation of cathepsins. Similar patterns of activation, expression, and localization suggest a possible connection between cathepsins and autophagy. The results open up new possibilities to enhance microspore embryogenesis efficiency with autophagy and/or cysteine protease modulators.España, MINECO AGL2014-52028-R and AGL2017-82447-

    Especificaciones para un prototipo de vehículo híbrido de ciudad

    Get PDF
    Cualquier proyecto de ingeniería pretende mejorar una realidad en la que, necesariamente, están involucradas personas. En el caso que nos ocupa se estudia la modificación de los vehículos llamados comúnmente “vehículos sin carné” para convertirlos en vehículos híbridos. La mejora respecto la situación actual de dichos vehículos y en general respecto de la circulación por ciudad, puede hacer que el producto sea comercial y por lo tanto que dicha mejora pueda convertirse en realidad. En este caso, llamamos mejora, al ahorro económico, disminución de la contaminación acústica y disminución de las emisiones de CO2 a la atmósfera. Para obtener un valor de las variables anteriores que sea comercial y poder implantar la mejora en la sociedad, en el proceso de diseño se tendrán en cuenta el valor de dichas variables. De las distintas opciones se escogerá la más atractiva desde el punto de vista del consumidor. Los resultados del estudio son que el ahorro económico al cabo de la vida estimada del vehículo, bajo las hipótesis de funcionamiento establecidas, puede ser de 756 €. El ahorro de combustible y consecuente disminución de la contaminación está en torno al 27 % y se reduce la contaminación acústica en un 50,7 % del tiempo de utilización del vehículo

    Chloroplast damage induced by the inhibition of fatty acid synthesis triggers autophagy in chlamydomonas

    Get PDF
    Fatty acids are synthesized in the stroma of plant and algal chloroplasts by the fatty acid synthase complex. Newly synthesized fatty acids are then used to generate plastidial lipids that are essential for chloroplast structure and function. Here, we show that inhibition of fatty acid synthesis in the model alga Chlamydomonas reinhardtii activates autophagy, a highly conserved catabolic process by which cells degrade intracellular material under adverse conditions to maintain cell homeostasis. Treatment of Chlamydomonas cells with cerulenin, a specific fatty acid synthase inhibitor, stimulated lipidation of the autophagosome protein ATG8 and enhanced autophagic flux. We found that inhibition of fatty acid synthesis decreased monogalactosyldiacylglycerol abundance, increased lutein content, down-regulated photosynthesis, and increased the production of reactive oxygen species. Electron microscopy revealed a high degree of thylakoid membrane stacking in cerulenin-treated cells. Moreover, global transcriptomic analysis of these cells showed an up-regulation of genes encoding chloroplast proteins involved in protein folding and oxidative stress and the induction of major catabolic processes, including autophagy and proteasome pathways. Thus, our results uncovered a link between lipid metabolism, chloroplast integrity, and autophagy through a mechanism that involves the activation of a chloroplast quality control system.Ministerio de Economía y Competitividad BFU2015-68216-PJunta de Andalucía CVI-7336, BIO2015-74432-JI

    Autophagic flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas

    Get PDF
    Autophagy is an intracellular catabolic process that allows cells to recycle unneeded or damaged material to maintain cellular homeostasis. This highly dynamic process is characterized by the formation of double-membrane vesicles called autophagosomes, which engulf and deliver the cargo to the vacuole. Flow of material through the autophagy pathway and its degradation in the vacuole is known as autophagic flux, and reflects the autophagic degradation activity. A number of assays have been developed to determine autophagic flux in yeasts, mammals, and plants, but it has not been examined yet in algae. Here we analyzed autophagic flux in the model green alga Chlamydomonas reinhardtii. By monitoring specific autophagy markers such as ATG8 lipidation and using immunofluorescence and electron microscopy techniques, we show that concanamycin A, a vacuolar ATPase inhibitor, blocks autophagic flux in Chlamydomonas. Our results revealed that vacuolar lytic function is needed for the synthesis of triacylglycerols and the formation of lipid bodies in nitrogen- or phosphate-starved cells. Moreover, we found that concanamycin A treatment prevented the degradation of ribosomal proteins RPS6 and RPL37 under nitrogen or phosphate deprivation. These results indicate that autophagy might play an important role in the regulation of lipid metabolism and the recycling of ribosomal proteins under nutrient limitation in ChlamydomonasEspaña, MINECO BFU2015-68216-PEspaña, Junta de Andalucía CVI-7336 (to JLC), BIO2015-74432-JIN (to MEPP

    Internet scientific information seen by students of Compulsory Secondary Education: An exploratory study of their digital competences

    Get PDF
    En la actualidad Internet se ha convertido en la primera fuente de información científica. Esto justifica la necesidad de que todo ciudadano disponga de competencias que permitan evaluar los contenidos y su fiabilidad. En este trabajo se pretende explorar y describir las competencias digitales, adquiridas dentro o fuera del aula, que manifiestan un grupo de estudiantes de 4º de ESO al valorar un texto de Internet sobre un tema científico. Los resultados indican que los participantes tienen un buen desempeño para identificar ideas y posicionarse respecto a la información. Sin embargo, tienen dificultades para hacer inferencias lejanas, localizar errores, interpretar información y calificar su fiabilidad. Los resultados respaldan la necesidad de desarrollar competencias en las aulas para formar ciudadanos capaces de ser críticos al evaluar la enorme cantidad de información a la que están expuestos.Nowadays, the Internet has become the first source of scientific information. This fact justifies the need for every citizen to have competences that allow the evaluation of contents and their reliability. This paper aims to explore and describe the digital competences, acquired inside or outside the classroom, which are manifested by a group of 4th year ESO students when they assess an Internet text on a scientific topic. The results indicate that the participants show good performance to identify ideas and position themselves regarding the information. However, they have difficulty making distant inferences, locating errors, interpreting information and rating their reliability. The results support the need to develop competences in classrooms to train citizens capable of being critical and objective when evaluating the enormous amount of information that they are exposed to

    Comparative Analysis of Greedy Pursuits for the Order Reduction of Wideband Digital Predistorters

    Get PDF
    This paper provides a review of greedy pursuits for optimizing Volterra-based behavioral models structure and estimating its parameters. An experimental comparison of the digital predistortion (DPD) linearization performance achieved by these approaches for model-order reduction, such as compressive sampling matching pursuit (CoSaMP), subspace pursuit (SP), orthogonal matching pursuit (OMP), and the novel doubly OMP (DOMP), is presented. A benchmark of the techniques in the DPD of a commercial class AB power amplifier (PA) and a class J PA operating over a 15-MHz Long-Term Evolution (LTE) signal is presented, giving a clear overview of their pruning characteristics in terms of linearization indicators and regressor selection capabilities. In addition, the benchmark is run in a cross-validation scheme by identifying the DPD with a 30-MHz 5G-new radio (NR) signal and validating with the same signal and a 20-MHz multicarrier wideband code division multiple access (WCDMA) signal. The DOMP is shown to be a promising technique since it achieves an enhanced model-order reduction for a similar linearization performance and precision

    A bivariate volterra series model for the design of power amplifier digital predistorters

    Get PDF
    (This article belongs to the Special Issue Energy-Efficient Wireless Communication Systems)The operation of the power amplifier (PA) in wireless transmitters presents a trade-off between linearity and power efficiency, being more efficient when the device exhibits the highest nonlinearity. Its modeling and linearization performance depend on the quality of the underlying Volterra models that are characterized by the presence of relevant terms amongst the enormous amount of regressors that these models generate. The presence of PA mechanisms that generate an internal state variable motivates the adoption of a bivariate Volterra series perspective with the aim of enhancing modeling capabilities through the inclussion of beneficial terms. In this paper, the conventional Volterra-based models are enhanced by the addition of terms, including cross products of the input signal and the new internal variable. The bivariate versions of the general full Volterra (FV) model and one of its pruned versions, referred to as the circuit-knowledge based Volterra (CKV) model, are derived by considering the signal envelope as the internal variable and applying the proposed methodology to the univariate models. A comparative assessment of the bivariate models versus their conventional counterparts is experimentally performed for the modeling of two PAs driven by a 30 MHz 5G New Radio signal: a class AB PA and a class J PA. The results for the digital predistortion of the class AB PA under a direct learning architecture reveal the benefits in linearization performance produced by the bivariate CKV model structure compared to that of the univariate CKV model.Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación TEC2017-82807-PFondo Europeo de Desarrollo Regiona

    Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets

    Get PDF
    Recuperado de: https://www.biorxiv.org/content/10.1101/310102v1Target of rapamycin (TOR) kinase is a conserved regulator of cell growth whose activity is modulated in response to nutrients, energy and stress. Key proteins involved in the pathway are conserved in the model photosynthetic microalga Chlamydomonas reinhardtii, but the substrates of TOR kinase and downstream signaling network have not been elucidated. Our study provides a new resource for investigating the phosphorylation networks governed by the TOR kinase pathway in Chlamydomonas. We used quantitative phosphoproteomics to investigate the effects of inhibiting Chlamydomonas TOR kinase on dynamic protein phosphorylation. Wild-type and AZD-insensitive Chlamydomonas strains were treated with TOR-specific chemical inhibitors (rapamycin, AZD8055 and Torin1), after which differentially affected phosphosites were identified. Our quantitative phosphoproteomic dataset comprised 2547 unique phosphosites from 1432 different proteins. Inhibition of TOR kinase caused significant quantitative changes in phosphorylation at 258 phosphosites, from 219 unique phosphopeptides. Our results include Chlamydomonas homologs of TOR signaling-related proteins, including a site on RPS6 with a decrease in phosphorylation. Additionally, phosphosites on proteins involved in translation and carotenoid biosynthesis were identified. Follow-up experiments guided by these phosphoproteomic findings in lycopene beta/epsilon cyclase showed that carotenoid levels are affected by TORC1 inhibition and carotenoid production is under TOR control in algae.National Science Foundation CAREER MCB-155252

    Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope

    Get PDF
    Sequestration of c-Fos at the nuclear envelope (NE) through interaction with A-type lamins suppresses AP-1–dependent transcription. We show here that c-Fos accumulation within the extraction-resistant nuclear fraction (ERNF) and its interaction with lamin A are reduced and enhanced by gain-of and loss-of ERK1/2 activity, respectively. Moreover, hindering ERK1/2-dependent phosphorylation of c-Fos attenuates its release from the ERNF induced by serum and promotes its interaction with lamin A. Accordingly, serum stimulation rapidly releases preexisting c-Fos from the NE via ERK1/2-dependent phosphorylation, leading to a fast activation of AP-1 before de novo c-Fos synthesis. Moreover, lamin A–null cells exhibit increased AP-1 activity and reduced levels of c-Fos phosphorylation. We also find that active ERK1/2 interacts with lamin A and colocalizes with c-Fos and A-type lamins at the NE. Thus, NE-bound ERK1/2 functions as a molecular switch for rapid mitogen-dependent AP-1 activation through phosphorylation-induced release of preexisting c-Fos from its inhibitory interaction with lamin A/C
    corecore