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Abstract— This paper provides a review of greedy pursuits
for optimizing Volterra-based behavioral models structure and
estimating its parameters. An experimental comparison of the
digital predistortion (DPD) linearization performance achieved
by these approaches for model-order reduction, such as compres-
sive sampling matching pursuit (CoSaMP), subspace pursuit (SP),
orthogonal matching pursuit (OMP), and the novel doubly
OMP (DOMP), is presented. A benchmark of the techniques in
the DPD of a commercial class AB power amplifier (PA) and a
class J PA operating over a 15-MHz Long-Term Evolution (LTE)
signal is presented, giving a clear overview of their pruning
characteristics in terms of linearization indicators and regressor
selection capabilities. In addition, the benchmark is run in a
cross-validation scheme by identifying the DPD with a 30-MHz
5G-new radio (NR) signal and validating with the same signal
and a 20-MHz multicarrier wideband code division multiple
access (WCDMA) signal. The DOMP is shown to be a promising
technique since it achieves an enhanced model-order reduction
for a similar linearization performance and precision.

Index Terms— Adaptive algorithms, greedy algorithms, mod-
eling, nonlinear systems, power amplifiers (PAs), predistortion,
Volterra series.

I. INTRODUCTION

EVERY generation of wireless communication systems
brings new modulation schemes, higher bandwidths, and

more challenging constrains for the transceivers. Many efforts
have been devoted to the design of transmitters, in general,
and to the power amplifier (PA) in particular, the latter being
the most critical subsystem in terms of power efficiency and
linearity.

Obtaining an accurate prediction of the nonlinear distortion
produced by the PA with modern communication signals can
be computationally too expensive if a transistor level descrip-
tion is adopted. Among different system level approaches
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that have been proposed to cope with these simulations,
behavioral models based on Volterra series are quite pop-
ular [1], [2]. These Volterra-based behavioral models serve
also as a basis for digital predistortion (DPD), an appealing
linearization technique with the evolution of the processing
capacity of electronic devices [3].

The Volterra series consists of a sum of multidimensional
convolutions and can be seen as a generalization of a power
series representation with memory, which is limited to a finite
length for practical reasons. Since communication systems
are bandpass, it is common to express the input–output rela-
tionship in terms of the signals complex envelopes. When
the interest is placed on the fundamental frequency zone,
as it is the case for the PA modeling, only odd-order terms
are justified in the Volterra-based behavioral models. The
baseband model derived for the fundamental frequency output
is referred to as the full Volterra (FV) model [4] in order to
distinguish it from other pruned Volterra representations with
a simplified structure. Another general model is the complex-
valued Volterra series (CVS) model presented in [5] as an
extension of the Volterra series for the case of a nonlinear
system with complex-valued signals.

However, the more general the considered behavioral model
is, the larger the number of coefficients is included in its kernel
structure. Pruning has been dealt with different approaches.
In many cases, ad hoc pruning strategies are applied without
knowledge of the internal structure of the PA, based on an
a priori selection. This is the case of the widely adopted
memory polynomial (MP) [6] and generalized MP (GMP)
models [2]. Observe that the “even-order envelope power”
regressors used in MP and GMP are not even-order terms.
For example, |x |3x = (|x |2x)|x | is not an homogeneous
fourth-order term, because it is the product of the third-order
term |x |2x and the nonlinear function |x |. These beneficial
terms are also odd-order and can be explained from a Volterra
series perspective. Near-diagonality pruning was first intro-
duced in [7], producing a first concept of which components
of the model are more relevant.

Recently, several a posteriori techniques for model order
reduction based on signal processing have been proposed in the
literature in order to tackle this issue, relying on the sparsity
assumption for the kernels of the model. The least absolute
shrinkage and selection operator (LASSO), which provides a
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Fig. 1. Block diagram of an indirect learning DPD system.

sparse solution through the minimization of the �1-norm of the
error, was first introduced in PA modeling in [8]. The principal
component analysis (PCA), which enables the pruning in an
orthogonal subspace, was first employed for DPD in [9] and
recently given in an iterative fashion [10]. Pruning by the delay
characteristics of the regressors is performed in [11], and a
heuristic order-reduction method was introduced in [12].

Several algorithms within the family of greedy pursuits,
which are a subset of techniques in the compressed-sensing
field, have been also applied to DPD, as the compressive
sampling matching pursuit (CoSaMP) [13] and a related tech-
nique, the subspace pursuit (SP) [14]. The basis pursuit was
used for reducing the complexity of an MIMO DPD in [15].
The orthogonal matching pursuit (OMP) was first applied to
PA DPD in [16], followed by a reduced-complexity version
of the algorithm in [17]. To overcome the high correlation
that appears in Volterra series, the doubly OMP (DOMP) was
designed [18] as well as its low-complexity variant [19].

In [20], a review of widely adopted Volterra-based behav-
ioral models and techniques for optimizing the model structure
and estimating its parameters was performed. In this work,
we focus on greedy algorithms applied to the order reduction
of Volterra-based models, providing a standard formulation
and a discussion of their similarities and differences. The
experimental part covers the use of this set of techniques over
an FV and GMP DPDs in three scenarios and evaluates their
linearization performance.

The remainder of this contribution is organized as follows.
First, Section II introduces the commons of Volterra models
and regression. Section III deals with the theoretical part
and discussion of greedy algorithms followed by a com-
plexity assessment in Section IV. DPD experimental design
and results are detailed in Section V. Finally, Section VI
summarizes the main results and concludes this paper.

II. FRAMEWORK

A general schematic of a DPD system with coefficient
selection is shown in Fig. 1. Considering that the input and the
output of the system are the vectors x and y, constructed with
the corresponding complex envelope samples, the objective of
linearization is to compensate the resulting nonlinear distortion
by processing x with a DPD before it is applied to the PA
input. The success of the system linearization rests on a good
model approach to the system, a search of the significant terms
of the model with the consequent model-order reduction, and
a precise procedure to estimate the model parameters.

Fig. 2. Block diagram of Volterra series represented as a measurement
process where h is the vector of Volterra coefficients to be estimated.

In the modeling of the nonlinear response of a PA, the aim is
to find the mathematical relation f (·) between the input x[q]
and the output y[q]

y[q] = f (x[q])+ �[q] (1)

where q is the discrete-time index and � is the uncaptured
error by the model. Although there exists an ample literature
on how this behavior can be modeled [21]–[24]; in this work,
we put the spotlight on Volterra series, in which the output
is a linear combination of transformations φi (·) of the input
signal

y[q] =
∑

i

hiφi (x[q])+ � (2)

where hi is the i th Volterra coefficient and φi (x[q]) is its
corresponding regressor or component. As an example of
regressor structure, the most general is the FV that follows:

φi (x[q]) =
p+1∏

r=1

x[q − qr ]
2p+1∏

r=p+2

x∗[q − qr ]. (3)

The convenience of Volterra series resides in the fact that
although the relation between the input and the output is
inherently nonlinear, the Volterra regressors are linear to the
output in the Volterra subspace. There exist other structures
that exhibit these characteristics, such as the decomposed
vector rotation (DVR) [25]. This linearity enables the model
identification through all the classic signal processing, from
the well-known least-squares (LS) technique to the most
advanced sparse regression algorithms, allowing a diverse
set of techniques that deal with how to extract the relevant
coefficients. Representing (4) in its matrix form, we obtain
the measurement equation

y = Xh + � (4)

where y = [y[q], y[q − 1], . . . , y[q − m + 1]]T is a buffered
output set of m consecutive samples, X ∈ Cm×n is the
measurement matrix, which contains a regressor of size m per
column, and h ∈ Cn is the vector holding the n coefficients
of the model. Following Fig. 2, matrix X can be interpreted
as a vectorial basis (or more formally, since their columns are
nonorthogonal, this is called a frame [22], [26]) in which h
defines how much of each regressor is needed to represent the
output y.

The regression of the Volterra coefficients can be performed
by minimizing the quadratic norm of the error. The estimation
of the Volterra vector ĥ follows the normal equation:

ĥ = (XH X)−1XH y = X†y (5)
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where H is the Hermitian transpose operator. The
Moore–Penrose pseudoinverse X† computes the LS solution.

Regarding the structure of the measurement matrix X,
the baseband Volterra input–output relationship is

y[q] =
P∑

p=0

Q2p+1∑

q2p+1=0

h2p+1[q2p+1]

×
p+1∏

r=1

x[q − qr ]
2p+1∏

r=p+2

x∗[q − qr ] (6)

where 2P + 1 is the (odd) nonlinear order. The main disad-
vantage of the FV model is that its number of coefficients
largely increase with the order and the memory depth—this
fact is known as the curse of dimensionality—which affects
negatively to the computational complexity of the final model
and its properties through a regression. There exist several
ad hoc models that are widely used. The most simple of them
is the MP model [6], [27], which only retains the components
of the diagonal, that is,

y[q] =
P∑

p=0

L∑

l=0

apl x[q − l]|x[q − l]|p (7)

where P + 1 is the nonlinear order and L is the memory
depth. An extended version of the MP, which is very popular
among researchers because of its efficiency in the modeling of
memory effects, is the GMP, which adds nondiagonal terms
up to a certain distance from the diagonal. The GMP follows
the structure:

y[q] =
Pa∑

p=0

La∑

l=0

apl x[q − l]|x[q − l]|p

+
Pb∑

p=1

Lb∑

l=0

Ub∑

u=1

bplu x[q − l]|x[q − l − u]|p

+
Pc∑

p=1

Lc∑

l=0

Uc∑

u=1

cplu x[q − l]|x[q − l + u]|p (8)

having a regressor form of φ(x) = x[q − l]|x[q − l ± u]|p,
where Pi , i ∈ [a, b, c] control the nonlinear order, Li ,
i ∈ [a, b, c] fix the diagonal memory, and Ui , i ∈ [a, b, c]
set the maximum distance to the diagonal.

The main issue in the use of Volterra-based models is
related to their high number of coefficients. Setting the
order and memory parameters is a task that is commonly
executed by trial and error, increasing them up until a desired
level of performance is reached. Some indicators that relate
the modeling performance and complexity, such as the
complexity-aware-NMSE (CAN) metric [28] and the NMSE
tolerance per coefficient μ [12], have been defined to aid
this process. Also, since the models are usually defined in
a series form depending on parameters that set order and
memory depth, the selection of independent coefficients leads
to losing their original mathematical structure.

Algorithm 1 General Pursuit Framework

Input: X ∈ Cm×n , y ∈ Cm

Output: S(end), ĥ(end)

1: for t = 1 till stopping criterion is met do
2: Select columns of X (regressors of the model) based

on some algorithm-dependent criteria and include them
into S(t).

3: Update the estimate ŷ(t) and r(t).
4: end for

III. GREEDY PURSUITS

Greedy pursuits are a classic selection technique in the
field of compressed-sensing signal processing [22]. They allow
through an iterative fashion to select components of the model
to be used by applying some local criteria at each iteration.
Some of them also provide the sorting capability, returning an
ordered list of the coefficients in which they are positioned by
their relevance. In Algorithm 1, the general high-level frame-
work of greedy pursuits [22] is shown. Greedy algorithms take
as input the regressor matrix X and the output y, returning the
support set S(end), which includes the indices of the selected
regressors. The algorithm updates the residual

r(t) = y − ŷ(t) (9)

in each iteration t , which is defined as the difference between
the output and its estimate ŷ(t), and accounts for the amount
of error to be captured by the not yet selected coefficients.

In this context, the next component will be included in the
support set and depending on the particular greedy algorithm
itself, the selection rule varies. Finally, once the stopping
criterion is achieved, the algorithm halts the execution and
returns the selection. The stopping criterion can be either a
target objective, like a number of desired coefficients or an
amount of maximum error, or may be calculated with order
selection techniques.

In the mathematical formulation of the techniques, we rely
on the nonlinear projection Hk(·) that sets all but the largest k
elements of its arguments to zero and the supp(·) operation that
returns the indices of the elements of the argument that are
not equal to zero. For example, both functions concatenated
as supp(H1(·)) return the index of the maximum value of the
argument.

A. Orthogonal Matching Pursuit

The OMP [29] is a widely used greedy algorithm because
of its simplicity and convergence properties. In its execution,
it adds to the support set the regressor that has more resem-
blance with the residual, measured by their cross correlation.
This way, the normalized correlation of regressor i (note that
each column is divided by its module) is calculated

g(t)
{i} =

XH{i}
�X{i}�2 r(t−1) (10)

where the subindex {i} in the measurement matrix stands for
its i th column. The index s(t) that has the maximum correlation
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Algorithm 2 OMP
Input: X, y
Output: S(end), ĥ(end)

1: Initialization : r(0)← y, S(0)← ∅

2: for t = 1 till stopping criterion is met do

3: g(t)
{i}
∀i←− XH{i}
�X{i}�2 r(t−1)

4: s(t)← supp
(
H1

∣∣g(t)
∣∣)

5: S(t)← S(t−1) ∪ s(t)

6: ĥS(t)← X†
S(t)y

7: ŷ(t)← XS(t)ĥ
8: r(t)← y − ŷ(t)

9: end for

Algorithm 3 DOMP
Input: X, y
Output: S(end), ĥ(end)

1: Initialization : r(0)← y, S(0)← ∅, Z(0) ← X
2: for t = 1 till stopping criterion is met do

3: g(t)
{i}
∀i←− ZH{i}
�Z{i}�2 r(t−1)

4: s(t)← supp
(
H1

∣∣g(t)
∣∣)

5: S(t)← S(t−1) ∪ s(t)

6: p(t)← Z(t−1)

{i(t)}
H

Z(t−1)

7: Z(t)← Z(t−1) − p(t) ⊗ Z(t−1)

{i(t)}
8: ĥS(t)← X†

S(t)y
9: ŷ(t)← XS(t)ĥ

10: r(t)← y − ŷ(t)

11: end for

is attained through

s(t) = supp(H1|g(t)|) (11)

and then added to the support set in the next iteration

S(t) = S(t−1) ∪ s(t). (12)

Then, an estimation of the Volterra vector with just the
columns that belong to the support set is performed with (5)

ĥS(t) = X†
S(t)y (13)

and the residual is updated with (9).
In the following iteration, the contribution of the last

selected component will not be a part of the residual, and the
next most similar regressor will be then selected. The OMP is
summarized in Algorithm 2.

B. DOMP

The DOMP algorithm, whose summary is shown in
Algorithm 3, was specifically designed to deal with highly
correlated measurement matrices like Volterra series. It follows
the same selection criterion that the OMP, but after the selec-
tion, it orthogonalizes the unselected regressors with respect
to the chosen coefficient. That way it eliminates the effect of
the correlation of the support set and its complement. In its
operation, the algorithm keeps track of the matrix Z, which is

Algorithm 4 SP
Input: X, y, k
Output: S(end), ĥ(end)

1: Initialization : r(0)← y, S(0)← ∅

2: for t = 1 till stopping criterion is met do

3: g(t)
{i}
∀i←− XH{i}
�X{i}�2 r(t−1)

4: s(t)← supp
(
Hk

∣∣g(t)
∣∣)

5: S(t−0.5)← S(t−1) ∪ s(t)

6: ĥS(t−0.5) ← X†
S(t−0.5)y, ĥ

S(t−0.5) = 0

7: S(t)← supp(ĥS(t−0.5))

8: ĥS(t) ← X†
S(t)y

9: ŷ(t)← XS(t) ĥS(t)

10: r(t)← y − ŷ(t)

11: end for

Algorithm 5 CoSaMP
Input: X, y, k
Output: S(end), ĥ(end)

1: Initialization : r(0)← y, S(0)← ∅

2: for t = 1 till stopping criterion is met do

3: g(t)
{i}
∀i←− XH{i}
�X{i}�2 r(t−1)

4: s(t)← supp
(
H2k

∣∣g(t)
∣∣)

5: S(t−0.5)← S(t−1) ∪ s(t)

6: ĥS(t−0.5) ← X†
S(t−0.5)y, ĥ

S(t−0.5) = 0

7: S(t)← supp(ĥS(t−0.5))

8: ŷ(t)← XS(t) ĥS(t−0.5)

9: r(t)← y− ŷ(t)

10: end for

the orthogonal equivalent of X. Therefore, the selection is
performed in an orthonormal space that has a one-to-one
relation to the Volterra space, allowing to indirectly select
the coefficients in the measurement matrix. The orthogo-
nalization is performed by using Gram–Schmidt, which is
implemented in steps 6 and 7. In step 6, the projection of
the selected regressor onto the rest of the basis is performed
and then subtracted in step 7, where ⊗ denotes the Kronecker
product.

C. Subspace Pursuit and CoSaMP

The SP and the CoSaMP are very similar conceptually.
Algorithm 4 shows the SP pseudocode and Algorithm 5
summarizes the CoSaMP operation. Both perform a selection
in two stages. First, they select the k and 2k, respectively,
coefficients with the highest correlation to the residual and add
them to an intermediate support set S(t−0.5). The correspond-
ing estimation ĥS(t−0.5) is then performed and those coefficients
belonging to the complement of the support set ĥ

S(t−0.5) are

set to zero. Next, only the k coefficients of ĥ with the highest
absolute value are retained into S(t). The SP performs a second
pseudoinverse to update ĥ and the residual while the CoSaMP
uses the estimation of the Volterra vector attained in the first
selection.
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TABLE I

COMPUTATIONAL COMPLEXITY ASSESSMENT MEASURED AS NUMBER OF
MULTIPLICATION OPERATIONS WHERE t REFERS TO THE SIZE OF THE

SUPPORT SET THAT IS EQUAL TO THE ITERATION INDEX t

Note that while both OMP and DOMP add one component
to the support set per iteration, SP and CoSaMP run iteratively
for a desired sparsity level, providing a k-sparse solution until
reaching the stopping criterion.

IV. COMPLEXITY ASSESSMENT

In this section, we provide a computational complexity
comparison using the Bachmann–Landau notation in terms
of the number of arithmetic multiplications, being this latter
the one that has more impact on the overall complexity [30],
required for each algorithm operation. The analysis is per-
formed on the identification complexity of the techniques [31].
In Table I, the computational complexity per iteration for
the algorithms in comparison is provided. The complexity is
generally dominated by the pseudoinverse calculation involved
in the regression. The OMP performs a m × t pseudoinverse
per iteration, which results in a complexity of O(mt2) con-
sidering that the pseudoinverse is calculated by using the QR
algorithm. The DOMP shows an added complexity due to its
Kronecker product, which is resembled by the term O(m2n).
The SP realizes two m × k pseudoinverses and the CoSaMP
performs one m × 2k pseudoinverse, which follow O(2mk2)
and O(4mk2), respectively.

Their fixed complexity per iteration, which depends on
the desired sparsity, evidences the main advantage of SP
and CoSaMP against the matching pursuits. Both OMP and
DOMP have an increasing complexity with the number of
selected components. On the other hand, in SP and CoSaMP,
the number of iterations is not predefined, as it happens in
the OMP and the DOMP that require k iterations to provide
a k-sparse solution.

Finally, to wrap up the overview of greedy algorithms,
a high-level qualitative comparative is provided in Table II,
where the coefficient selection criterion used by each technique
along with their advantages and drawbacks are summarized.

V. EXPERIMENTAL BENCHMARK

The selection techniques have been validated in a
MATLAB-controlled hardware test bench shown in Fig. 3.
Thus, the benchmark was carried out using a 15-MHz
Long-Term Evolution (LTE) signal in different PAs, namely,
a commercial class AB PA and a class J PA, which are pre-
sented in Sections V-A and V-B, respectively. Also, a signal
cross validation was performed in Section V-C by identify-
ing the model with a 30-MHz 5G-new radio (NR) signal
and subsequently performing the validation operating over a
20-MHz multicarrier wideband code division multiple
access (WCDMA) signal.

Fig. 3. Experimental benchmark. (a) Block-diagram. (b) Photograph of the
actual setup.

The experimental setup is composed of a SMU200A
vector signal generator (VSG) from Rohde & Schwarz, a
PXA-N9030A vector signal analyzer (VSA) from Keysight
Technologies, and two dc power supplies. The equipment,
except one of the power supplies, is controlled through LAN
and general-purpose instrumentation bus (GPIB) by using
standard commands for programmable instruments (SCPI)
from a PC with MATLAB.

A. DPD of a Commercial PA

A test signal was generated with an OFDM format and
15-MHz bandwidth, according to the LTE downlink standard,
with a peak-to-average power ratio (PAPR) of 9.8 dB and more
than 360 000 samples. A custom MATLAB script controlled
the sending of the signal to the VSG and its settings to generate
it with an oversampling factor of 6, i.e., a sampling frequency
of 92.16 MSa/s.

A ZHL42W preamplifier from MiniCircuits was the first
device of the measurement chain, followed by the evaluation
board of a PA based on Cree’s CGH40010 GaN HEMT.
The ZHL42W drived the PA to a higher nonlinear operation
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TABLE II

QUALITATIVE COMPARATIVE OF GREEDY ALGORITHMS

Fig. 4. Linearization performance for the models in comparison for a sweep of desired number of coefficients. (a) NMSE. (b) ACPR in the first lower and
upper adjacent channels. (c) EVM. (d) NMSE tolerance per coefficient (μ).

point, delivering an average output power of +26.2 dBm
(+36.0 dBm of peak output power) at 3.6 GHz. The average
gain was 46.2 dB, which corresponds to a gain compression
of 0.7 dB.

In the VSA, the output RF signal was downconverted to
baseband and the appropriate range and sampling rate were set
in order to recover it. The measurement dynamic range was
optimized by averaging 300 acquisitions of the output signal.



BECERRA et al.: ANALYSIS OF GREEDY PURSUITS FOR ORDER REDUCTION OF WIDEBAND DIGITAL PREDISTORTERS 3581

TABLE III

BENCHMARK OF PRUNING TECHNIQUES FOR A TARGET NMSE OF −45 dB

TABLE IV

SELECTED REGRESSORS FOR EACH OF THE PRUNING TECHNIQUES FOR A MODEL OF 20 COEFFICIENTS

Then, the signal was downloaded to the MATLAB workspace
and it was postprocessed to adequate it to the algorithms. The
postprocessing consisted on the following operations.

1) Normalization: Scaling of the signal taking into account
the attenuations and gains of the measurement chain.

2) Time Alignment: Synchronization of the input and output
signals in time.

3) Partition Into Several Data Sets: The DPDs were identi-
fied with a segment of consecutive samples with length
equal to the 0.5% of the total signal length. This segment
was chosen to include the sample with the highest
absolute value at the output. The complete signal was
applied to the DPD in order to get the predistorted input
signal.

The model under test was a FV configured with a fifth order
and memory depth of 3. The memoryless part up to 13th order
was added to it in order to enhance its modeling capabilities,
reaching a total number of coefficients of 248. The full basis
model follow (6) with P = 6 and Q2p+1 = 3 for p ∈ [0, 1, 2]
and Q2p+1 = 0 for p ∈ [3, 4, 5].

The OMP, DOMP, PCA, SP, and CoSaMP techniques were
swept in number of desired coefficients to perform a bench-
mark. Fig. 4 shows the linearization performance of each of
the algorithms. In this work, we selected the following order-
reduction performance indicators.

1) Normalized mean square error (NMSE) between the
input to the DPD and the scaled PA output.

2) Adjacent channel power ratio (ACPR) of the output
signal.

3) Error vector magnitude (EVM) of the linearized signal.
4) NMSE tolerance per coefficient (μ) [12] defined as the

achieved linearization NMSE divided by the number of
coefficients of the DPD.

As it is reasonable to expect, NMSE, ACPR, and EVM follow
the same pattern for all the techniques in comparison. Since
OMP, DOMP, and PCA select the coefficients incrementally,
the evolution of the error metrics is decreasing with the number
of components. SP and CoSaMP are run independently for
each number of coefficients; therefore, they do not guarantee
models with increasing error mitigation capabilities, i.e., the
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Fig. 5. Spectrum of a 15-MHz LTE signal for 20 coefficients. (a) PSD of
the output. (b) PSD of the error.

DPDs for each number of coefficients are independent. PCA
shows a slow decrease in the first iterations to achieve the
best linearization at the end of the span in the number of
coefficients. DOMP achieves the fastest pruning, reaching
its best linearization performance in just the first iterations.
Regarding the NMSE tolerance, the Pareto front—defined
here as the values with lowest tolerance for each number of
coefficients [32]—is conformed by the DOMP for μ < −1
and by PCA for a number of coefficients greater than 50.

In order to highlight the pruning performance of the algo-
rithms, a target linearization NMSE of −45 dB was fixed. The
pruned model with the least number of coefficients that fulfills
the target NMSE is given in Table III. All the algorithms
provide similar linearization capabilities in terms of ACPR,
while the reduction in the number of coefficients varies from
a 96% in the DOMP to a 85% in the PCA. The maximum

Fig. 6. Linearization performance of a class J PA for the models in
comparison for a sweep of desired number of coefficients. (a) NMSE.
(b) ACPR.

NMSE tolerance is produced by the DOMP, with over −9 dB
per coefficient.

Table IV shows the selected regressors for a fixed number
of 20 coefficients. Note that for SP and CoSaMP, these are
provided without any particular order, while for OMP and
DOMP, they are sorted as returned by the algorithms. Focusing
on the memoryless part, all the algorithms select it, with
the exception of the fifth-order term x(q)|x(q)|4 in the SP
case. The DOMP selects the whole set of the first-order
regressors x(q − 1), x(q − 2), and x(q − 3) while the OMP
misses the second and the SP and CoSaMP were not able
to catch them. Also, regarding the sort order (than can only
be compared between OMP and DOMP because these are
the only ones that are incremental), DOMP chooses first the
regressors that are reasonably expected to be important, such
as the memoryless part, the linear terms and some other third
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Fig. 7. Linearization performance for the models in comparison for a sweep of desired number of coefficients in a cross-validation scenario. The DPD was
identified with a 30-MHz 5G-NR signal. (a) NMSE and (b) ACPR of a 30-MHz 5G-NR signal. (c) NMSE and (d) ACPR of a 20-MHz multicarrier WCDMA
signal.

order terms, while OMP has dispersion in the criteria for the
selection. Regarding the spectral regrowth reduction, the nor-
malized power spectral density (PSD) of the linearized signal
and of the error signal for the same number of coefficients are
shown in Fig. 5. The out-of-band distortion is clearly reduced
with respect to the case without DPD. The DOMP algorithm
improves the performance of the other algorithms showing a
linearization result similar to the OMP, followed by the rest
of the techniques.

B. DPD of a Class J PA

The experimental benchmark was also run over a continuous
mode class J PA [33] based on the CGH35015F device, which
was designed for an operation frequency of 850 MHz. Respect
to the previous experiment, the driver was replaced by two
cascaded Mini-Circuits TVA-4W-422A+ preamplifiers.

The operation point was set to an output power of
+32.8 dBm, in which the PA exhibits a gain expansion

followed by a compression. This behavior produces a
remarkable nonlinear distortion, illustrated by the fact that the
operation point exhibits an ACPR of −28.7 and −27.8 dBc
in the first adjacent channels, and an NMSE of −19.0 dB.
In this experiment, the model under test was a GMP with 13th
order in the diagonal and 7th order in the nondiagonal parts.
The memory was set to decrease with the order, resulting in
a set of 81 coefficients.

Fig. 6 demonstrates how the behavior of the benchmark
holds after varying the PA and the model under test, in which
the DOMP exhibits the fastest decay.

C. DPD of a Commercial PA and Signal Cross Validation

A cross-validation experiment was carried out in order
to further probe the DPDs attained by the algorithms.
In this experiment, the DUT was the evaluation board
used in Section V-A. The driver was replaced by a
Mini-Circuits TVA-4W-422A+, which brought the DUT to
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Fig. 8. AM/AM and AM/PM characteristics of the PA without DPD and the
DOMP algorithm with 35 coefficients.

a higher operation point and the sweep in desired sparsity
was repeated. The output power was +29.2 dB, showing
an average gain of 61.1 dB and a gain compression of
over 2 dB.

The signal used for DPD identification was configured fol-
lowing the 5G-NR standard with a separation between subcar-
riers of 30 KHz and a canalization of 30 MHz. With the aim of
highlighting the independence of the signal, the obtained DPDs
were also validated with a 20-MHz multicarrier WCDMA.
A crest factor reduction (CFR) technique was applied to both
signals for exhibiting a PAPR of 10.5 dB. The model under
test was the GMP used in Section V.B.

The linearization performance in NMSE and ACPR is
shown in Fig. 7, where it can be observed that the resulting
DPDs hold the performance after changing the signal type.
The AM/AM and AM/phase modulation (PM) characteristics
of the PA without DPD and with a 35-coefficient DPD attained
by the DOMP are shown in Fig. 8. Finally, Fig. 9 shows the

Fig. 9. PSD for 35 coefficients in a cross-validation scenario, having
identified the DPD with a 5G-NR signal. (a) 30-MHz 5G-NR (b) 20-MHz
multicarrier WCDMA.

unlinearized and linearized spectra considering the resulting
DPD for a target number of coefficients of 35.

VI. CONCLUSION

This paper has presented a review of greedy pursuits for the
order reduction of behavioral models. A standard framework
has been provided in which OMP, DOMP, SP, and CoSaMP
algorithms have been formulated with a common notation.
As a result, the slight differences in the algorithm equations
have been highlighted. The computational complexity of the
techniques has been assessed, and a high-level qualitative
comparative has been provided.

Moreover, a benchmark of the techniques in the DPD of a
commercial class AB PA and a class J PA have been presented,
giving a clear overview of their pruning characteristics in terms
of linearization indicators and regressor selection capabilities.
The novel technique that takes into account the correlation
of the Volterra basis, the DOMP algorithm, has shown an
equivalent linearization performance with fewer coefficients
than the rest of the algorithms in comparison.
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