805 research outputs found

    Environmental features of Chinese architectural heritage: the standardization of form in the pursuit of equilibrium with nature

    Get PDF
    We present a scientific discussion about Chinese historical architecture and cultural paradigms in order to analyze the formation of building patterns objectively connected to environmental features. In this regard, we will demonstrate the process of standardization from architectural modules related in different levels of composition around “voids”, onto cosmological urban tissues in harmony with nature. The conclusions show that we can only understand Chinese architectural patterns in relation to Dào or nature, and in turn, they possess profound social and environmental values from which we receive useful lessons to advance towards sustainability in architecture and urban planning. The authors believe that it is critical for China and the world to find a new approach to the building construction industry with an ecological and philosophical background recognizable as “Chinese” and based in its own past. In order to support the information provided in the first part of the article, the authors have conducted an environmental analysis of the traditional Chinese urban layout whose results greatly confirm the initial hypotheses, i.e. the historical fashion of constructing neighborhoods improves conditions of the town in terms of comfort and is able to save energy, thus reducing pernicious change effects

    Daylight and Architectural Simulation of the Egebjerg School (Denmark): Sustainable Features of a New Type of Skylight

    Get PDF
    This article discusses the performance of a new skylight for standard classrooms at the Egebjerg School (Denmark), which was built ca. 1970. This building underwent important reforms under a European project to which the authors contributed. This research aimed to create a new skylight prototype that is useful for several schools in the vicinity, since there is a lack of educational facilities. The former skylights consisted of plastic pyramids that presented serious disadvantages in terms of sustainability matters. During the design process, the priority changed to studying the factors that correlate daylighting with energy and other environmental aspects in a holistic and evocative approach. Accordingly, the new skylight features promote the admittance and di usion of solar energy through adroit guidance systems. In order to simulate di erent scenarios, we employed our own simulation tool, Diana X. This research-oriented software works with the e ects of direct solar energy that are mostly avoided in conventional programs. By virtue of Lambert’s reciprocity theorem, our procedure, which was based on innovative equations of radiative transfer, converts the energy received by di usive surfaces into luminous exitance for all types of architectural elements. Upon completion of the skylights, we recorded onsite measurements, which roughly coincided with the simulation data. Thus, conditions throughout the year improved

    Restauración del Jardín del Patio de las doncellas en el Real Alcázar de Sevilla

    Get PDF

    Analisis descriptivo de la sociedad y economía del municipio de Olvera

    Get PDF
    Universidad de Sevilla. Grado en Administración y Dirección de Empresa

    El zen y la tauromaquia

    Get PDF

    Architectural Characteristics of Different Configurations Based on New Geometric Determinations for the Conoid

    Get PDF
    The aim of this article is to orient the evolution of new architectural forms offering up-to-date scientific support. Unlike the volume, the expression for the lateral area of a regular conoid has not yet been obtained by means of direct integration or a differential geometry procedure. In this type of ruled surface, the fundamental expressions I and II, for other curved figures have proved not solvable thus far. As this form is frequently used in architectural engineering, the inability to determine its surface area represents a serious hindrance to solving several problems that arise in radiative transfer, lighting and construction, to cite just a few. To address such drawback, we conceived a new approach that, in principle, consists in dividing the surface into infinitesimal elliptic strips of which the area can be obtained in an approximate fashion. The length of the ellipse is expressed with certain accuracy by means of Ramanujan’s second formula. By integrating the so-found perimeter of the differential strips for the whole span of the conoid, an unexpected solution emerges through a newly found number that we call psi (ψ). In this complex process, projected shapes have been derived from an original closed form composed of two conoids and called Antisphera for its significant parallels with the sphere. The authors try to demonstrate that the properties of the new surfaces have relevant implications for technology, especially in building science and sustainability, under domains such as structures, radiation and acoustics. Fragments of the conoid have occasionally appeared in modern and contemporary architecture but this article discusses how its use had been discontinued, mainly due to the uncertainties that its construction posed. The new knowledge provided by the authors, including their own proposals, may help to revitalize and expand such interesting configurations in the search for a revolution of forms

    The Problem of Lighting in Underground Domes, Vaults, and Tunnel-Like Structures of Antiquity; An Application to the Sustainability of Prominent Asian Heritage (India, Korea, China)

    Get PDF
    Lighting in heritage is complex because of the forms intervening in it. The historical evolution of cultures has not been analytical and therefore, the shapes involved di er greatly from the cuboids typically found in 21st century architecture. As a vector, light inevitably attaches to surface sources. In this research, we focused on 3D curved geometries. Following a di erent trail to radiative transfer by virtue of detailed knowledge of the spatiality of volumes, we present new expressions, previously undefined in the literature, that are derived from a combination of surfaces that we have found in many archaeological sites around Asia. In the discussion, we start from the particularities of spherical surfaces where a normal vector has to pass through the center. By means of easy calculations, we deducted innovative laws. These in turn, allowed us to formulate several new expressions for configuration factors based on the adroit use of spherical fragments. The method easily extends to organic shapes that are often contained in the sustainable architecture of the past. The method finishes with suitable algorithms to assess the reflections in such curved forms. Finally, we implemented the results in our creative software. In this way, we enhanced the sustainable paradigms for heritage structures in Asia that we present as a conclusion of the article

    Phase Composition and Transport Properties of oxide ion conductors based on Sr1-xKxGeO3-x/2

    Get PDF
    Oxide ion conductors have been increasingly studied because of their potential applications in different electrochemical devices, such as, oxygen sensors, membranes for oxygen separation and components of fuel cells. Solid Oxide Fuel Cells (SOFCs) are electrochemical devices that operate at high temperatures, 600-1000 ºC, with higher efficiency for electrical generation than conventional systems based on fuel combustion. The high operating temperatures of the SOFC is mainly due to the limited ionic conductivity of the electrolyte. Zr0.84Y0.16O1.92 (YSZ) is the electrolyte most widely used in commercial systems due to its high stability and oxide ion conductivity at elevated temperatures (900-1000 ºC). However, there is a great interest in the development of devices with lower operation temperatures (600-800 ºC) to overcome collateral problems like difficulties in cell sealing or shorter lifetime of the components caused by the high operation temperature of YSZ. The high oxide ion conductivities recently reported in Na- and K-doped strontium silicates and germanates, make them potentially suitable for SOFC electrolytes. In this work, the structure, microstructure and electrical properties of Sr1-xKxGeO3-x/2 (x = 0.0, 0.1, 0.15 and 0.2) compounds have been re-investigated. The materials have been prepared by conventional ceramic and freeze-drying precursor methods. Different phases are stabilized depending on the synthetic method and the sintering temperature. Samples prepared by freeze-drying at 700 ºC exhibit a triclinic structure, which transforms to a mixture of monoclinic and trigonal related phases on heating at 1000 ºC. The presence of some broad diffractions peaks, which are not fitted in the Rietveld analysis, indicates the existence of an amorphous or low-crystalline phase (ACn) that have been quantified by an external standard procedure (G-factor approach). The homogeneity and chemical composition of the samples were checked by scanning electron microscopy combined with energy dispersive spectroscopy (EDX). The total conductivity of these materials was studied by impedance spectroscopy.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The architect Roberto Rivero and daylighting research

    Get PDF
    By the end of the 1950’s decade, architect Roberto Oscar Rivero, who had been studying in England, returned to his native Uruguay and produced a revolutionary approach to daylighting techniques: he was able to relate lighting intensities with positions of points located underneath rectangular windows , plotting the result in a simple table. He could do so with the help of painstaking graphs that he drew manually. To introduce the value of the transmittance in his methods he had to define an expression widely quoted by scientists around the world, the Rivero Transmittance Formula, which shows the relevance of directionality in a factor usually taken as scalar in most calculations. This procedure also permitted the study of skies like the CIE overcast sky, which were strongly dependent on the angle of altitude and hence the performance of uniform and overcast skies could be compared. With so many fortunate advances he was on the verge of finding a more general solution to radiative exchange problems, which intriguingly enough, he was not able to produce eventually. Roberto Rivero has passed away recently, and his original texts have almost disappeared as there was no re-edition of this material. Since the manuscripts were conveyed in Spanish, we have felt the necessity to explain his discoveries for an English-speaking audience. In order to do this, we will use a contemporary point of view, and we will discuss how far he could have reached and what he achieved in the daylighting field
    corecore