796 research outputs found

    An exact expression to calculate the derivatives of position-dependent observables in molecular simulations with flexible constraints

    Get PDF
    In this work, we introduce an algorithm to compute the derivatives of physical observables along the constrained subspace when flexible constraints are imposed on the system (i.e., constraints in which the hard coordinates are fixed to configuration-dependent values). The presented scheme is exact, it does not contain any tunable parameter, and it only requires the calculation and inversion of a sub-block of the Hessian matrix of second derivatives of the function through which the constraints are defined. We also present a practical application to the case in which the sought observables are the Euclidean coordinates of complex molecular systems, and the function whose minimization defines the constraints is the potential energy. Finally, and in order to validate the method, which, as far as we are aware, is the first of its kind in the literature, we compare it to the natural and straightforward finite-differences approach in three molecules of biological relevance: methanol, N-methyl-acetamide and a tri-glycine peptideComment: 13 pages, 8 figures, published versio

    Comparative indoor and outdoor stability measurements of polymer based solar cells

    Get PDF
    We report comparative indoor and outdoor stability testing of organic solar cells based on a blend between a donor-acceptor polyfluorene copolymer and a fullerene derivative. The outdoor testing was conducted for a period over 12,000 hours in Sheffield, England, with a Ts80 lifetime determined in excess of 10,000 hours (420 days). Indoor lifetime testing was performed on solar cells using a solar simulator under a constant irradiance of 1000 W/m(2) for more than 650 hours. We show that under the conditions explored here, device degradation under the two sets of conditions is approximately dependent on the absorbed optical energy dose

    Peristomal Skin Complications Are Common, Expensive, and Difficult to Manage: A Population Based Cost Modeling Study

    Get PDF
    BACKGROUND: Peristomal skin complications (PSCs) are the most common post-operative complications following creation of a stoma. Living with a stoma is a challenge, not only for the patient and their carers, but also for society as a whole. Due to methodological problems of PSC assessment, the associated health-economic burden of medium to longterm complications has been poorly described. AIM: The aim of the present study was to create a model to estimate treatment costs of PSCs using the standardized assessment Ostomy Skin Tool as a reference. The resultant model was applied to a real-life global data set of stoma patients (n = 3017) to determine the prevalence and financial burden of PSCs. METHODS: Eleven experienced stoma care nurses were interviewed to get a global understanding of a treatment algorithm that formed the basis of the cost analysis. The estimated costs were based on a seven week treatment period. PSC costs were estimated for five underlying diagnostic categories and three levels of severity. The estimated treatment costs of severe cases of PSCs were increased 2-5 fold for the different diagnostic categories of PSCs compared with mild cases. French unit costs were applied to the global data set. RESULTS: The estimated total average cost for a seven week treatment period (including appliances and accessories) was 263€ for those with PSCs (n = 1742) compared to 215€ for those without PSCs (n = 1172). A co-variance analysis showed that leakage level had a significant impact on PSC cost from 'rarely/never' to 'always/often' p<0.00001 and from 'rarely/never' to 'sometimes' p = 0.0115. CONCLUSION: PSCs are common and troublesome and the consequences are substantial, both for the patient and from a health economic viewpoint. PSCs should be diagnosed and treated at an early stage to prevent long term, debilitating and expensive complications

    Functional and Structural Insights Revealed by Molecular Dynamics Simulations of an Essential RNA Editing Ligase in Trypanosoma brucei

    Get PDF
    RNA editing ligase 1 (TbREL1) is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design. In this work, two 20 ns atomistic molecular dynamics (MD) simulations are employed to investigate the dynamics of TbREL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between TbREL1 and the ATP substrate are investigated and discussed in the context of TbREL1's function. Differences in local and global motion upon ATP binding suggest that two peripheral loops, unique to the trypanosomes, may be involved in interdomain signaling events. Notably, a significant structural rearrangement of the enzyme's active site occurs during the apo simulations, opening an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors directed against this protozoan parasite. Finally, ensemble averaged electrostatics calculations over the MD simulations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions and recommendations, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme

    Preventive drugs in the last year of life of older adults with cancer: Is there room for deprescribing?

    Get PDF
    BACKGROUND: The continuation of preventive drugs among older patients with advanced cancer has come under scrutiny because these drugs are unlikely to achieve their clinical benefit during the patients' remaining lifespan. METHODS: A nationwide cohort study of older adults (those aged ≥65 years) with solid tumors who died between 2007 and 2013 was performed in Sweden, using routinely collected data with record linkage. The authors calculated the monthly use and cost of preventive drugs throughout the last year before the patients' death. RESULTS: Among 151,201 older persons who died with cancer (mean age, 81.3 years [standard deviation, 8.1 years]), the average number of drugs increased from 6.9 to 10.1 over the course of the last year before death. Preventive drugs frequently were continued until the final month of life, including antihypertensives, platelet aggregation inhibitors, anticoagulants, statins, and oral antidiabetics. Median drug costs amounted to 1482(interquartilerange[IQR],1482 (interquartile range [IQR], 700-2896])perperson,including2896]) per person, including 213 (IQR, 7777-490) for preventive therapies. Compared with older adults who died with lung cancer (median drug cost, 205;IQR,205; IQR, 61-523),costsforpreventivedrugswerehigheramongolderadultswhodiedwithpancreaticcancer(adjustedmediandifference,523), costs for preventive drugs were higher among older adults who died with pancreatic cancer (adjusted median difference, 13; 95% confidence interval, 55-22) or gynecological cancers (adjusted median difference, 27;9527; 95% confidence interval, 18-$36). There was no decrease noted with regard to the cost of preventive drugs throughout the last year of life. CONCLUSIONS: Preventive drugs commonly are prescribed during the last year of life among older adults with cancer, and often are continued until the final weeks before death. Adequate deprescribing strategies are warranted to reduce the burden of drugs with limited clinical benefit near the end of life

    The Birth Weight Lowering C-Allele of rs900400 Near LEKR1 and CCNL1 Associates with Elevated Insulin Release following an Oral Glucose Challenge

    Get PDF
    BACKGROUND AND AIM:The first genome-wide association study on birth weight was recently published and the most significant associated birth weight lowering variant was the rs900400 C-allele located near LEKR1 and CCNL1. We aimed to replicate the association with birth weight in the Danish Inter99 study and furthermore to evaluate associations between rs900400 and indices of insulin secretion and insulin sensitivity obtained by oral glucose tolerance tests in adults from the Danish Inter99 study and the Finnish, Metabolic Syndrome in Men (METSIM) sample. METHODS:For 4,744 of 6,784 Inter99 participants, midwife journals were traced through the Danish State Archives and association of rs900400 with birth weight was examined. Associations between rs900400 and fasting serum insulin, fasting plasma glucose, insulinogenic index, homeostasis model assessment of insulin resistance (HOMA-IR) and disposition index were studied in 5,484 Danish and 6,915 Finnish non-diabetic individuals and combined in meta-analyses. RESULTS:The C-allele of rs900400 was associated with a 22.1 g lower birth weight ([-41.3;-3.0], P = 0.024) per allele. Moreover, in combined analyses of the Danish Inter99 study and the Finnish METSIM study we found that the birth weight lowering allele was associated with increased insulin release measured by the insulinogenic index (β = 2.25% [0.59; 3.91], P = 0.008) and with an increased disposition index (β = 1.76% [0.04; 3.49], P = 0.05). CONCLUSION:The birth weight lowering effect of the C-allele of rs900400 located near LEKR1 and CCNL1 was replicated in the Danish population. Furthermore the C-allele was associated with increased insulin response following oral glucose stimulation in a meta-analysis based on Danish and Finnish non-diabetic individuals

    Intratumoral heterogeneity of microRNA expression in rectal cancer

    Get PDF
    Introduction: An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. Materials and Methods: The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated using Spearman's correlation. Results: ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH), miRNA-125b (RT-qPCR and ISH), miRNA-145 (ISH), miRNA-630 (RT-qPCR), and miRNA-31 (RT-qPCR). For miRNA-145 (RT-qPCR) and miRNA-630 (ISH), ICCmean was lower than 50%. Spearman correlation coefficients, comparing results obtained by RT-qPCR and ISH, respectively, ranged from 0.084 to 0.325 for the mean value from each patient, and from -0.085 to 0.515 in the section including the deepest part of the tumour. Conclusion: Intratumoral heterogeneity may influence the measurement of miRNA expression and consequently the number of samples needed for representative estimates. Our findings with two different methods suggest that one sample is sufficient for adequate assessment of miRNA-21 and miRNA-31, whereas more samples would improve the assessment of miRNA-125b, miRNA-145, and miRNA-630. Interestingly, we found a poor correlation between the expression estimates obtained by RT-qPCR and ISH, respectively

    Understanding the molecular determinants driving the immunological specificity of the protective pilus 2a backbone protein of Group B Streptococcus

    Get PDF
    The pilus 2a backbone protein (BP-2a) is one of the most structurally and functionally characterized components of a potential vaccine formulation against Group B Streptococcus. It is characterized by six main immunologically distinct allelic variants, each inducing variant-specific protection. To investigate the molecular determinants driving the variant immunogenic specificity of BP-2a, in terms of single residue contributions, we generated six monoclonal antibodies against a specific protein variant based on their capability to recognize the polymerized pili structure on the bacterial surface. Three mAbs were also able to induce complement-dependent opsonophagocytosis killing of live GBS and target the same linear epitope present in the structurally defined and immunodominant domain D3 of the protein. Molecular docking between the modelled scFv antibody sequences and the BP-2a crystal structure revealed the potential role at the binding interface of some non-conserved antigen residues. Mutagenesis analysis confirmed the necessity of a perfect balance between charges, size and polarity at the binding interface to obtain specific binding of mAbs to the protein antigen for a neutralizing response
    corecore