2,681 research outputs found

    Accelerating Monte Carlo simulations with an NVIDIA® graphics processor

    Get PDF
    Modern graphics cards, commonly used in desktop computers, have evolved beyond a simple interface between processor and display to incorporate sophisticated calculation engines that can be applied to general purpose computing. The Monte Carlo algorithm for modelling photon transport in turbid media has been implemented on an NVIDIA® 8800gt graphics card using the CUDA toolkit. The Monte Carlo method relies on following the trajectory of millions of photons through the sample, often taking hours or days to complete. The graphics-processor implementation, processing roughly 110 million scattering events per second, was found to run more than 70 times faster than a similar, single-threaded implementation on a 2.67 GHz desktop computer

    Stages of neuronal network formation

    Get PDF
    Graph theoretical approaches have become a powerful tool for investigating the architecture and dynamics of complex networks. The topology of network graphs revealed small-world properties for very different real systems among these neuronal networks. In this study, we observed the early development of mouse retinal ganglion cell (RGC) networks in vitro using timelapse video microscopy. By means of a time-resolved graph theoretical analysis of the connectivity, shortest path length and the edge length, we were able to discover the different stages during the network formation. Starting from single cells, at the first stage neurons connected to each other ending up in a network with maximum complexity. In the further course, we observed a simplification of the network which manifested in a change of relevant network parameters such as the minimization of the path length. Moreover, we found that RGC networks self-organized as small-world networks at both stages; however, the optimization occurred only in the second stage

    Ligand Mediated Sequestering of Integrins in Raft-Mimicking Lipid Mixtures: The Role of Bilayer Asymmetry and Cholesterol Content

    Get PDF
    poster abstractLipid microdomains play an important functional role in plasma membranes. However, the small size and transient nature of lipid/membrane heterogeneities in the plasma membrane make characterization of microdomains and microdomain-related membrane processes quite challenging. To address this issue, we recently introduced a powerful model membrane system that allows the investigation of membrane protein sequestering and oligomerization in raft-mimicking lipid mixtures using combined confocal fluorescence spectroscopy, photon counting histogram (PCH), and epifluorescence microscopy. Our experiments on bilayer-spanning domains showed that αvβ3 and α5β1 integrins predominantly exist as monomers and sequester preferentially to the liquid-disordered (ld) phase in the absence of ligands. Notably, addition of vitronectin (αvβ3) and fibronectin (α5β1) caused substantial translocations of integrins into the liquid-ordered (lo) phase without altering receptor oligomerization state. Here we expand our previous studies and report on the sequestering and oligomerization state of αvβ3 and α5β1 in asymmetric bilayer compositions containing coexisting lo and ld phases located exclusively in the top leaflet of the bilayer (bottom leaflet shows only ld phase). Remarkably, in such a membrane environment, both integrins show a higher affinity for the top leaflet-restricted lo domains in the absence of their respective ligands. A slight change in the integrin sequestration was observed after addition of their respective ligands. We also present experimental findings, which show that cholesterol content has a substantial influence on integrin sequestering and oligomerization in raft-mimicking lipid mixtures. The described experimental results highlight the potential importance of membrane asymmetry and lipid composition in the sequestering of membrane proteins in biological membranes

    Neural coding of image structure and contrast polarity of Cartesian, hyperbolic and polar gratings in the primary and secondary visual cortex of the tree shrew

    Get PDF
    We comprehensively characterize spiking and visual evoked potential (VEP) activity in tree shrew V1 and V2 using Cartesian, hyperbolic and polar gratings. Neural selectivity to structure of Cartesian gratings was higher than other grating classes in both visual areas. From V1 to V2, structure selectivity of spiking activity increased, while corresponding VEP values tended to decrease, suggesting that single neuron coding of Cartesian grating attributes improved while the cortical columnar organization of these neurons became less precise from V1 to V2. We observed that neurons in V2 generally exhibited similar selectivity for polar and Cartesian gratings, suggesting that structure of polar-like stimuli might be encoded as early as in V2. This hypothesis is supported by the preference shift from V1 to V2 toward polar gratings of higher spatial frequency, consistent with the notion that V2 neurons encode visual scene borders and contours. Neural sensitivity to modulations of polarity of hyperbolic gratings was highest among all grating classes and closely related to the visual receptive field (RF) organization of ON- and OFF- dominated subregions. We show that spatial RF reconstructions depend strongly on grating class, suggesting that intracortical contributions to RF structure are strongest for Cartesian and polar gratings. Hyperbolic gratings tend to recruit least cortical elaboration such that the RF maps are similar to those generated by sparse noise, which most closely approximate feed-forward inputs. Our findings complement previous literature in primates, rodents and carnivores and highlight novel aspects of shape representation and coding occurring in mammalian early visual cortex

    Effects of UV-B and water deficit on aroma precursors in grapes and flavor release during wine micro-vinification and consumption

    Get PDF
    UV-B radiation and water availability can affect amino acids(AAs) concentration in berries, resulting in the evolution of aroma compounds during alcoholic fermentation. This study investigated the effects of UV-B exposure and water availability on wine aroma compounds in Pinot noir, focusing on the role of AAs in the process.Enhanced UV-B radiation significantly decreased total AA concentrations and most individual AAs in berries and wines, while water deficit increased some individual AAs in wines. Higher alcohols, fatty acids, esters, monoterpenes, and C₁₃-norisoprenoids were affected by UV-B interaction with water deficit in wines. These results suggested individual or combined UV-B exposure and water deficit had direct effects on fruit AAs, leading to significant differences in some wine aroma compounds

    Conjugates of Superoxide Dismutase 1 with Amphiphilic Poly(2-oxazoline) Block Copolymers for Enhanced Brain Delivery: Synthesis, Characterization and Evaluation in Vitro and in Vivo

    Get PDF
    Superoxide dismutase 1 (SOD1) efficiently catalyzes dismutation of superoxide but its poor delivery to the target sites in the body, such as brain, hinders its use as a therapeutic agent for superoxide-associated disorders. Here to enhance the delivery of SOD1 across the blood brain barrier (BBB) and in neurons the enzyme was conjugated with poly(2-oxazoline) (POx) block copolymers, P(MeOx-b-BuOx) or P(EtOx-b-BuOx), comprised of 1) hydrophilic 2-methyl-2-oxazoline (MeOx) or 2-ethyl-2-oxazoline (EtOx) and 2) hydrophobic 2-butyl-2-oxazoline (BuOx) repeating units. The conjugates contained from 2 to 3 POx chains joining the protein amino groups via cleavable -(ss)- or non-cleavable –(cc)- linkers at the BuOx block terminus. They retained 30% to 50% of initial SOD1 activity, were conformationally and thermally stable and assembled in 8 or 20 nm aggregates in aqueous solution. They had little if any toxicity to CATH.a neurons and displayed enhanced uptake in these neurons as compared to native or PEGylated SOD1. Of the two conjugates, SOD1-(cc)-P(MeOx-b-BuOx) and SOD1-(cc)-P(EtOx-b-BuOx) compared, the latter was entering cells 4 to 7 times faster and at 6 h colocalized predominantly with endoplasmic reticulum (41 ± 3%) and mitochondria (21 ± 2%). Colocalization with endocytosis markers and pathway inhibition assays suggested that it was internalized through lipid raft/caveolae, also employed by the P(EtOx-b-BuOx) copolymer. The SOD activity in cell lysates and ability to attenuate angiotensin II (Ang II)-induced superoxide in live cells were increased for this conjugate compared to SOD1 and PEG-SOD1. Studies in mice showed that SOD1-POx had ca. 1.75 times longer half-life in blood than native SOD1 (28.4 vs 15.9 min) and after i.v. administration penetrated the BBB significantly faster than albumin to accumulate in brain parenchyma. The conjugate maintained high stability both in serum and in brain (77% vs. 84% at 1 h post injection). Its amount taken up by the brain reached a maximum value of 0.08%ID/g (percent of the injected dose taken up per gram of brain) 4 h post injection. The entry of SOD1-(cc)-P(EtOx-b-BuOx) to the brain was mediated by a non-saturable mechanism. Altogether, SOD1-POx conjugates are promising candidates as macromolecular antioxidant therapies for superoxide-associated diseases such as Ang II induced neuro-cardiovascular diseases

    Individualized targeted treatment in a case of a rare TFG::ROS1 fusion positive inflammatory myofibroblastic tumor (IMT)

    Get PDF
    Background Inflammatory myofibroblastic tumor (IMTs) are rare mesenchymal neoplasms with slow growth. Resection is considered as therapeutic standard, with chemotherapy being insufficiently effective in advanced disease. ALK translocations are present in 50% of cases, ROS1 fusions (YWHAE::ROS1, TFG::ROS1) are extremely rare. Here, we present a case with TFG::ROS1 fusion and highlight the significance of molecular tumor boards (MTBs) in clinical precision oncology for post-last-line therapy. Case Presentation A 32-year-old woman presented with IMT diagnosed at age 27 for biopsy and treatment evaluation. Previous treatments included multiple resections and systemic therapy with vinblastine, cyclophosphamide, and methotrexate. A computed tomography scan showed extensive tumor infiltration of the psoas muscles and the posterior abdomen. Next generation sequencing revealed an actionable ROS1 fusion (TFG::ROS1) with breakpoints at exon 4/35 including the kinase domain and activating the RAS-pathway. TFG, the Trk-fused gene, exerts functions such as intracellular trafficking and exhibits high sequence homology between species. Based on single reports about efficacy of ROS1-targeting in ROS1 translocation positive IMTs the patient was started on crizotinib, an ATP-competitive small molecule c-MET, ALK and ROS1-inhibitor. With a follow-up of more than 9 months, the patient continues to show a profound response with major tumor regression, improved quality of life and no evidence for severe adverse events. Conclusion This case underscores the importance of the availability of modern molecular diagnostics and interdisciplinarity in precision oncology to identify rare, disease-defining genotypes that make an otherwise difficult-to-treat disease targetable
    corecore