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Abstract

Background: Inflammatory myofibroblastic tumor (IMTs) are rare mesenchymal neo-

plasms with slow growth. Resection is considered as therapeutic standard, with che-

motherapy being insufficiently effective in advanced disease. ALK translocations are

present in 50% of cases, ROS1 fusions (YWHAE::ROS1, TFG::ROS1) are extremely rare.

Here, we present a case with TFG::ROS1 fusion and highlight the significance of molecu-

lar tumor boards (MTBs) in clinical precision oncology for post-last-line therapy.

Case Presentation: A 32-year-old woman presented with IMT diagnosed at age

27 for biopsy and treatment evaluation. Previous treatments included multiple resec-

tions and systemic therapy with vinblastine, cyclophosphamide, and methotrexate. A

computed tomography scan showed extensive tumor infiltration of the psoas mus-

cles and the posterior abdomen. Next generation sequencing revealed an actionable

ROS1 fusion (TFG::ROS1) with breakpoints at exon 4/35 including the kinase domain

and activating the RAS-pathway. TFG, the Trk-fused gene, exerts functions such as

intracellular trafficking and exhibits high sequence homology between species. Based

on single reports about efficacy of ROS1-targeting in ROS1 translocation positive

IMTs the patient was started on crizotinib, an ATP-competitive small molecule

c-MET, ALK and ROS1-inhibitor. With a follow-up of more than 9 months, the

patient continues to show a profound response with major tumor regression,

improved quality of life and no evidence for severe adverse events.

Conclusion: This case underscores the importance of the availability of modern molec-

ular diagnostics and interdisciplinarity in precision oncology to identify rare, disease-

defining genotypes that make an otherwise difficult-to-treat disease targetable.
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1 | INTRODUCTION

Inflammatory myofibroblastic tumors (IMTs) are rare mesenchymal

neoplasms, with approximately 150–200 new cases diagnosed each

year in the United States.1 They belong to the group of inflammatory

pseudotumors and represent a distinct pathological entity. While they

predominantly manifest in children at an average age of 9–10 years,

in adolescents, cases have been reported across all age groups. IMTs

often form in the retroperitoneum, pelvis, abdomen, and lungs, but

can arise in any other anatomic location.2

Histopathologically, IMTs are defined by a variable proliferation

of spindle cells on both myxoid or collagenous stroma with prominent

infiltrates of plasma cells and lymphocytes.2 Three major histological

patterns have been defined: (1) areas with myxoid, vascular, and

inflammatory features resembling nodular fasciitis; (2) infiltrates of

inflammatory cells within compacted spindle cells with resemblance

to fibrous histiocytoma; (3) plate-like patterns of collagen with resem-

blance to a desmoid scar.3

Molecular characterization of IMTs demonstrated that every sec-

ond case harbors a translocation of the ALK gene.4 The 30 kinase

region of ALK can be fused to several partners, among them are

TPM4, CLTC, CARS, ATIC, SEC31L1, PPFIBP1, DCTN1, EML4, PRKAR1A,

LMNA, TFG, FN1, HNRNPA1.5–13 ALK fusion negative cases are much

rarer and include translocations of ROS1, PDGFRB, NTRK3, RET, and

IGF1R.7,14,15

Clinically, IMTs are characterized by slow, non-aggressive growth

patterns. Constitutional symptoms are often the cause for primary

presentation to a health care provider. The standard treatment

approach for localized disease is complete resection and has high

potential for cure. Although metastatic disease is extremely rare, 25%

of patients with abdominopelvic tumors experience local recurrence.3

In patients with advanced or metastatic disease, therapeutic options

include chemotherapy, tyrosine kinase inhibitors (TKI), and nonsteroi-

dal anti-inflammatory drugs (NSAIDS). Retrospective studies demon-

strate a high degree of efficacy with overall response rates (ORR)

ranging from 48% to 64% for classical chemotherapy. Successfully

applied regimens include adriamycin and ifosfamide, methotrexate,

vinblastine, gemcitabine, docetaxel, and cyclophosphamide.16–18 The

use of NSAIDs has also been reported, including combinations with

methotrexate or methotrexate/cisplatin.19,20

For ALK mutated IMTs, ALK inhibitors are currently the preferred

treatment option. Based on case reports, a phase I/II study with crizo-

tinib was initiated, which showed an overall response rate (ORR) of

50% (6 of 12 patients) and a disease control rate (DCR) of 100%.21,22

In a separate phase IB study, an ORR of 71% (5 of 7 patients) was

reported.23 Data for targeted therapies in ALK-negative patients

remains scarce and represents a relevant clinical need.

2 | CASE DESCRIPTION

Here, we describe the case of a 32-year-old woman with no previous

medical history who presented with recurrent retroperitoneal IMT in

May 2022. Prior exposure to radiation or toxins was not reported.

The patient was originally diagnosed and treated in Ukraine. Retroper-

itoneal IMT was diagnosed in 2017 at the age of 27 years at the

University Hospital in Kyiv. Treatment consisted of repeated resec-

tions in June and December 2017 as well as in August 2018. In 2018,

metronomic chemotherapy was started with the NSAID celecoxib fol-

lowed by vinblastine, cyclophosphamide and methotrexate. Best

response was stable disease (SD). The therapy was continued until the

patient fled from Ukraine in January 2022.

The patient presented to a cooperating oncology practice of the

University Hospital Augsburg (UKA) with pain and functional impair-

ment in the left gluteal region and edematous swelling of the left leg.

Computed tomography (CT) scans of the abdomen showed an exten-

sive tumorous mass infiltrating the psoas and iliopsoas muscles and

subsequently infiltrating the posterior abdominal wall, lateral paraver-

tebral muscles, and kidney (Figure 1A).

Because no tissue samples were available for additional molecular

testing, a CT-guided biopsy was performed, and the case was referred

to the Molecular Tumor Board (MTB) at UKA. Histologic examination

confirmed the presence of IMT (Figure 2A,B). Using the AmpliSeq for

Illumina Focus Panel, RNA Sequencing of the FFPE-Material identified

a TFG::ROS1 translocation (Figure 2C).

As next-line treatment, the kinase inhibitor crizotinib was recom-

mended, consistent with an evidence level of m1C according to

National Center for Tumor Diseases (NCT) guidelines.24 The patient

began treatment with crizotinib but rapidly developed relevant side

effects. Due to edema, nausea, dizziness, and muscle cramps, the max-

imum tolerated dose was reduced to 250 mg daily, as opposed to the

recommended dose of 250 mg twice daily. Concomitant medication

consisted of dexamethasone, ondansetron, metoclopramide and

metamizole.

Follow-up with CT 5 months after therapy onset showed an

excellent response with significant regression of soft tissue forma-

tions in all affected muscles (Figure 1B). The abdominal wall metasta-

sis also markedly regressed in terms of soft tissue involvement.

Flake-like calcifications and visible volume decrease remained, but

no pathological contrast uptake was detected. The imaging-based

response was associated with a significant reduction in pain,

decrease in swelling of the left leg, and functional improvement of

the patient. The patient is still undergoing treatment 9 months after

initiation.

2.1 | TFG::ROS1-fusion

ROS1 encodes a receptor tyrosine kinase whose physiological role in

homo sapiens ultimately remains unelucidated.25 The neural epidermal

growth factor-like like 2 (NELL2) protein, has recently been shown to

bind to the extracellular domain of mouse ROS1.25 NELL2 is a lumi-

crine factor that is secreted by testicular germ cells and mediates

lumicrine signaling, an essential pathway for male fertility.25 Activated

ROS1 signaling autophosphorylates tyrosine residues in the intracellu-

lar domain. Phosphorylated sites are consecutively accessed by SH2
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domain-containing or further canonical adaptors. These adaptor pro-

teins then stimulate signaling via RAS-RAF-MEK-ERK, PI3K-AKT-

mTOR and JAK-STAT3 pathways, which are mainly involved in the

regulation of cell survival, growth and proliferation.26

Up to 55 different 50-gene partners have been described as

fused to the 30 region of ROS1. This marked heterogeneity of ROS1

partner genes has been observed between patients and especially

between different cancer types. In IMTs, YWHAE::ROS1 and TFG::

(A) (B)F IGURE 1 Computed tomography
imaging showed inhomogeneous soft
tissue formations in the psoas muscle, the
iliopsoas and in the lateral paravertebral
musculature (indicated by arrows) before
initiation of crizotinib (A) and 5 months
into therapy (B). The abdominal wall
metastasis on the left paraumbilical side
regressed considerably regarding soft

tissue involvement. Grossly flaked
calcifications and a decrease in volume,
but no pathologic uptake of contrast
remained in the affected muscular
structures.

(A)

(C)

(B)

F IGURE 2 (A) Infiltration of muscle fibers by a spindle-like mesenchymal tumor (hematoxylin and eosin stain, �20), (B) ROS1-antibody
staining shows subtle but distinct positivity for ROS1 (�20). Scale bar = 50 μm. (C) Schematic representation of the TFG::ROS1 translocation. The
ROS1 gene is located on chromosome 6 (6q22.1). TFG is located on chromosome 3 (3q12.2). Exons 36–41 encode the kinase domain. The four
major intronic breakpoints are within the introns 31, 33, 34, and 35. TFG exon 1–4 are fused in-frame to ROS1.
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ROS1 are the predominant translocations and make up 10% of all

IMTs.7,27,28

Both translocations result in a loss of the large extracellular

domain as well as a fusion (in-frame) of the N-terminal portion of the

fusion partner with the intracellular kinase domain. Tropomyosin-

receptor kinase fused gene (TFG) is a common fusion partner of ROS1,

MET, ALK, NRTK1, and NTRK3.29 ROS1-fusions lead to constitutive

activation of the kinase domain, which drives oncogenesis via the

described signal transduction pathways.

The kinase domain of ROS1 shares 70% homology with the ALK

kinase domain. The ROS1 kinase exhibits two main conformations:

type I is the active form, while type II is the inactive form. Most TKIs

(e.g., crizotinib, entrectinib, ceritinib, ensartinib, brigatinib, lorlatinib,

repotrectinib, and taletrectinib) bind to the active type I kinase form,

which contains the ATP-binding pocket of the ROS1 kinase, and thus

inhibit its kinase activity.26 The type I conformation provides access

to the catalytic site of the kinase domain by geometrically enabling

contact through folding/orientation of an aspartic acid-

phenylalanine-glycine motif (DFG-motif or DFG-in). In type I configu-

ration, phosphatases of ATP are optimally positioned to facilitate

phosphate transfer and therefore exerting catalytic activity. Type I

inhibitors compete with ATP binding. In contrast, the inactive, type II,

“DFG-out” kinase domain conformation is characterized by blocked

access to the catalytic site. Type II ROS1 inhibitors such as cabozanti-

nib and foretinib preferentially bind to the type II conformation.

Figure 3A,B gives an overview of the mechanism of action of

crizotinib and summarizes the pathways activated by ROS1 (adapted

from26).

3 | METHOD AND LIMITATIONS

Detection of the ROS1 fusion transcript was performed by next gen-

eration sequencing (NGS) and overexpression resulting from the

fusion was confirmed by immunohistochemistry. From formalin-fixed

and paraffin-embedded (FFPE) tumor tissue, an area of the tumor was

microdissected under histomorphological control with a tumor purity

of 70%. Libraries were prepared from RNA and DNA using the Ampli-

Seq for Illumina Focus Panel amplicon based chemistry.30 RNA

sequencing was carried out with an average on-target aligned reads of

300 000. Data analysis was performed as previously described.31 In

brief, the Illumina BaseSpace application was used for DNA/RNA

amplicon analysis and comprehensive variant identification including

SNVs, CNVs, indels and gene fusions. Non-synonymous and non-

polymorphic variants were interpreted using Illumina's Variant Inter-

preter and cross-checked via the Integrated Genome Viewer to rule

out sequence errors. The BaseSpace Knowledge Network was used

for additional data analysis.

Limitations and challenges of amplicon-based panels include the

limited scope of regions examined, as only certain sequence segments

of the genome are covered. In particular, for the detection of larger

structural variants and chromosomal translocations or gene fusions, as

F IGURE 3 (A) ROS1 receptor domain comprises an intracellular kinase domain (KD), a transmembrane domain (TM), nine fibronectin motifs
and three ß-propeller domains. Interaction with NELL2 is supposed to mediate autophosphorylation and KD activation. Signal transduction is
ultimately mediated via JAK/STAT and RAS–RAF–MEK–ERK pathways, respectively. (B) DFG-motif in type I conformation (DFG-in) with
crizotinib shown in yellow (adapted from PDB 3ZBF).
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in this case, amplicon-based panels have their limitations. Amplicon-

based panels can only map known fusion breakpoints and are there-

fore generally virtually unsuitable for detecting new unknown fusion

partners or fusions at unusual breakpoints not covered by amplicons.

Because fusion transcripts can vary widely in expression, quantifica-

tion using amplicon-based approaches can be inaccurate due to inher-

ent amplification bias. However, the clinical relevance of fusions is

often critically related to the extent of expression.

4 | DISCUSSION

Here, we describe a case in precision medicine where a direct link

between a molecularly defined target and disease progression exists

in a rare cancer entity that allows for a targeted therapy. Our case

report is further evidence of effective targeted TKI-based therapy in

IMTs. In addition, our case report highlights the value of a sophisti-

cated diagnostic infrastructure and modern pipeline for individual

therapy management in rare cancers. This is of particular importance

in rare tumors such as IMTs, where identification of gene fusions is

critical for highly effective personalized treatment with TKIs. Integrat-

ing advanced molecular diagnostics with an MTB that allows for thor-

ough research and interdisciplinary evidence assessment based on

available data is key to providing the most informed, evidence-based,

and individualized approach to specific oncological cases.

We illustrate the relevance and effectiveness of this approach in

a rare case of ROS1-translocated IMT. After several previous treat-

ment approaches and lines of therapy, and most recently with pro-

gressive disease, the diagnosis of IMT was confirmed by core needle

biopsy and a TFG::ROS1 translocation was detected by NGS. The

patient responded very well to crizotinib within a short period of

time and showed a tolerable level of adverse events after dose

adjustment. We identified 8 case reports with IMTs harboring a

ROS1 translocation including one case with the translocation partner

YWHAE1 (Table 1). All but one patient was started on crizotinib

(entrectinib in one case). A single patient demonstrated a complete

response (CR), whereas six of the eight patients showed a partial

response (PR), with another patient exhibiting stable disease (SD).

Subsequently, disease progression (PD) was observed in two

patients during their treatment with crizotinib. One of the latter

patients did not respond to subsequent therapy with ceritinib, but

eventually the patient's tumor achieved a near CR with lorlatinib, a

third-generation TKI. The second patient had a rapid clinical

response to brigatinib for 9 months and was subsequently switched

to lorlatinib, which led to a PR allowing for complete resection of the

tumor after 1 year.

As drug resistance may develop, regular CT scans to assess tumor

dimensions and subsequent molecular re-profiling in case of progres-

sion are crucial to detect resistance to the selective therapeutic pres-

sure exerted by crizotinib. With brigatinib and lorlatinib, there are

alternatives in case of progression. Unfortunately, all case reports

cover only a short follow-up period. Longitudinal follow-up, including

monitoring of ROS1 fusion transcripts and detection of potential resis-

tance mutations in ROS1, is necessary to evaluate and select the best

targeted treatment for patients with IMTs. A modern MTB infrastruc-

ture for tracking individual patient trajectories including clinical and

molecular follow-up needs to be implemented, especially in the con-

text of actionable targets.

TABLE 1 Published case reports of patients with ROS1-translocated inflammatory myofibroblastic tumors.

Report Translocation Primary lesion Age Sex Drug Duration of response Response Comment

Comandini et al.32 YWHAE1::ROS1 Left thigh 23 Male Crizotinib > 3 years ongoing CR

Lovly et al.7 TFG::ROS1 Left lung 6 Male Crizotinib > 4 months PR

Srikanth Ambati et al.33 TFG::ROS1 Left lung 10 Female Entrectinib >13 cycles PR Patient chose active

surveillance after

very good PR

Carcamo et al.34 TFG::ROS1 Chest wall 16 Male Crizotinib 8 months PR

Ceritinib No response

Lorlatinib > 11 months PR Near-complete response

Ingly et al.35 TFG::ROS1 Right Lung 14 Female Crizotinib 22 cycles SD PR brain metastasis

Brigatinib 9 months Rapid clinical

response

Lorlatinib 1 year PR Complete surgical

resection after

1 year Lorlatinib

Styczewska36 TFG::ROS1 Tongue 7 Female Crizotinib 4 months PR Complete surgical

resection after

Treatment

Mai et al.37 TFG::ROS1 Right Lung 14 Male Crizotinib >8 months PR

Vassal g. et al.38 Not reported

partner::ROS1

Na Na Na Crizotinib Na PR

SOMMER ET AL. 5 of 7

 25738348, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnr2.1916 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [13/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



5 | CONCLUSION

Despite their typically protracted and less aggressive course, IMTs

remain challenging both in diagnosis and treatment. NGS-based

identification of genomic alterations and predictive genetic bio-

markers have become an integral part of diagnostic workup in pre-

cision oncology. This case once more highlights the importance of

molecular diagnostics, the value of access to a multidisciplinary

MTB with access to cutting-edge technology and the resulting indi-

vidualized treatment.
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