15 research outputs found

    Metabolic rates, feed intake, appetite control, and gut transit of clownfish Amphiprion ocellaris exposed to increased temperature and limited feed availability

    Get PDF
    Episodes of elevated temperature, combined with lower feed availability, are among the predicted scenarios of climate change representing a challenge for coral reef fish. We investigated the response of clownfish (Amphiprion ocellaris) to a scenario in which it received a single meal to satiety after 48 h fasting at 32 °C (climate change scenario) and 28 °C (control). We analysed the metabolic rate (MR), feed intake, gut transit, and expression of selected brain neuropeptides and one receptor believed to be involved in appetite control. Fish at 32 °C ingested 17.9% less feed and had a faster gut transit than did fish at 28 °C. MR in the unfed fish was 31% higher at 32 °C compared to 28 °C. In the fed fish, postprandial MR at 28 °C was 30% higher compared to that of unfed fish, while at 32 °C it was only 15% higher. The expression of agrp1 did not differ between unfed and refed fish. The levels of both pomca and mc4r increased immediately after the meal and subsequently declined, suggesting a possible anorexic role for these genes. Notably, this pattern was accelerated in fish kept at 32 °C compared with that in fish kept at 28 °C. The dynamics of these changes in expression correspond to a faster gut transition of ingested feed at elevated temperatures. For both agrp2 and pomcb there was an increase in expression following feeding in fish maintained at 32 °C, which was not observed in fish kept at 28 °C. These results suggest that low feed availability and elevated temperature stimulate anorexigenic pathways in clownfish, resulting in significantly lower feed intake despite the temperature-induced increase in metabolic rate. This may be a mechanism to ameliorate the decrease in aerobic scope that results from higher temperatures.publishedVersio

    Amino Acid Carriers of the Solute Carrier Families 7 (SLC7) and 38 (SLC38) Are Involved in Leucine Sensing in the Brain of Atlantic Salmon (Salmo salar)

    Get PDF
    Sensing of amino acids in fish brain, especially branched-chain amino acids (BCAA) like leucine, is involved in regulation of feed intake through different mechanisms. However, there is limited information regarding the possible involvement of mechanisms dependent on amino acid carriers of the solute carrier families (SLC) known to be key regulators of intracellular leucine concentration, namely L-type amino acid transporter 1 (LAT1), and sodium-dependent neutral amino acid transporter 2 (SNAT2) and 9,(SNAT9), for which evidence of their participation is available in mammals. Comparative analysis amongst sequences revealed a complex pattern of paralogues in Atlantic salmon, for LAT1 (slc7a5aa, slc7a5ab, slc7a5ba, slc7a5bb, slc7a5ca, and slc7a5cb), SNAT2 (slc38a2a and slc38a2b) and SNAT9 (slc38a9). After establishing phylogenetic relationships of the different paralogues evaluated, samples of the selected brain areas were taken from Atlantic salmon to assess tissue distribution of transcripts. In an additional experiment, fish were fed two diets with different levels of leucine (high leucine: 35 g/kg vs. control leucine: 27.3 g/kg). The high leucine diet resulted in lower feed intake and increased mRNA abundance of specific paralogues of LAT1 (slc7a5aa, slc7a5ab, and slc7a5bb) and SNAT2 (slc38a2a and slc38a2b) though apparently not for SNAT9 in brain areas like hypothalamus and telencephalon involved in food intake regulation. The results obtained suggest a role for members of the SLC family in the anorectic effect of leucine and thus their involvement as additional amino acid sensing mechanism not characterised so far in fish regulation of feed intake.publishedVersio

    PCB-126 spiked to polyethylene microplastic ingested by juvenile Atlantic cod (Gadus morhua) accumulates in liver and muscle tissues

    Get PDF
    In the present study, polyethylene (PE) microplastics (150–300 μm) were added to Atlantic cod (Gadus morhua) feeds at 1 %, either in their present form (Virgin PE) or spiked with PCB-126 (Spiked PE). The feeds were given to juvenile cod for a 4-week period. The fish grew from 11 to 23 g with no significant difference between dietary treatments. Cod fed spiked PE showed a significantly higher concentration of PCB-126 in liver and muscle samples compared to control and fish ingesting virgin PE. In accordance with the accumulation of PCB-126 in the liver, the expression of hepatic cyp1a was higher in cod fed spiked PE. Notably, we observed that spiked PE, as well as virgin PE, have an effect on skin. Overall changes indicated a reduced skin barrier in fish fed a diet containing PE. Indicating that PE itself through interaction with gut tissue may influence skin health in fish.PCB-126 spiked to polyethylene microplastic ingested by juvenile Atlantic cod (Gadus morhua) accumulates in liver and muscle tissuespublishedVersio

    Daily rhythms of intestinal cholecystokinin and pancreatic proteases activity in Senegalese sole juveniles with diurnal and nocturnal feeding

    Get PDF
    The influence of diurnal and nocturnal feeding on daily rhythms of gut levels of cholecystokinin (CCK) and the activity of two key pancreatic proteases, trypsin and chymotrypsin, were examined in juveniles of Senegalese sole (Solea senegalensis), a species with nocturnal habits. Four feeding protocols were performed: P1) One morning meal; P2) Six meals during the light period; P3) Six meals during the dark period; and P4) 12 meals during 24 h. Daily activity patterns of both proteases were remarkably similar and showed a high correlation in all the experimental protocols. In P1, daily patterns of CCK and digestive enzymes showed a single maximum. In P2, CCK levels exhibited two peaks. Digestive enzymes activities showed slightly delayed peaks compared to CCK, although their daily fluctuations were not significant. In P3, intestinal CCK concentration exhibited two peaks at the end of light and dark periods, but only the second one was significant. The first maximum level of chymotrypsin activity occurred 4 h after the first CCK peak, while the second one coincided with the second CCK peak. Fluctuations of trypsin activity were not significant. In P4, CCK concentration showed three small peaks. Digestive enzymes daily fluctuations were not significant, although they showed an inverted trend with respect to CCK. The daily pattern of the gut CCK content in our study is in agreement with the anorexigenic function of this hormone. Our results support the existence of a negative feedback regulatory loop between CCK and pancreatic proteolytic enzymes in Senegalese sole juveniles.acceptedVersio

    Elevated sea temperature combined with dietary methionine levels affect feed intake and appetite-related neuropeptide expression in the brains of juvenile cobia (Rachycentron canadum)

    Get PDF
    This study aimed to determine the impact of elevated temperature combined with different levels of dietary methionine concentrations on feed intake (FI) and brain expression of selected neuropeptides and one receptor involved in appetite control in juvenile cobia (approximately 3.7 g body weight). The genes studies were neuropeptide y, npy; agouti-related protein, agrp; cocaine- and amphetamine-regulated transcript, cart; cholecystokinin, cck and melanocortin 4 receptor; mc4r. The cobia were reared at typical sea water temperature in Vietnam (30 °C) and elevated temperature (34°C; selected as one of the predicted scenarios of climate change). The fish were fed diets with different levels of methionine: deficient (M9; 9.1 g/kg), sufficient (M12; 12.8 g/kg) and surplus (M16, 16.8 g/kg) for 6 weeks (triplicate tanks per treatment). Both dietary methionine concentration and temperature affected FI in cobia. Dietary methionine deficiency (i.e., M9) and elevated temperature reduced FI in cobia. Temperature significantly influenced the mRNA expression of agrp, cart, cck and mc4r. Expression of the orexigenic neuropeptide npy was consistently higher before the meal than after the meal for all diets and at both temperatures. At 30°C, prefeeding levels of npy correlated with both increased methionine levels and FI. The interaction between dietary methionine and temperature on the levels of brain npy expression was significant (P<0.05). There was higher brain expression of agrp, cart and cck in cobia at 34°C than in fish at 30°C, which was correlated with a lower FI. In conclusion, both feeding, temperature and/or dietary methionine levels affected the brain expression of npy and agrp, cart, cck and mc4r. This suggests that these neuropeptides as well as the mc4r receptor are actively involved in adjusting feed intake to compensate for changing energetic demands, as well as metabolic adjustments due to the variable availability of methionine at elevated temperature.publishedVersio

    Cloning, tissue and ontogenetic expression of the taurine transporter in the flatfish Senegalese sole (Solea senegalensis)

    Get PDF
    Flatfish species seem to require dietary taurine for normal growth and development. Although dietary taurine supplementation has been recommended for flatfish, little is known about the mechanisms of taurine absorption in the digestive tract of flatfish throughout ontogeny. This study described the cloning and ontogenetic expression of the taurine transporter (TauT) in the flatfish Senegalese sole (Solea senegalensis). Results showed a high similarity between TauT in Senegalese sole and other vertebrates, but a change in TauT amino acid sequences indicates that taurine transport may differ between mammals and fish, reptiles or birds. Moreover, results showed that Senegalese sole metamorphosis is an important developmental trigger to promote taurine transport in larvae, especially in muscle tissues, which may be important for larval growth. Results also indicated that the capacity to uptake dietary taurine in the digestive tract is already established in larvae at the onset of metamorphosis. In Senegalese sole juveniles, TauT expression was highest in brain, heart and eye. These are organs where taurine is usually found in high concentrations and is believed to play important biological roles. In the digestive tract of juveniles, TauT was more expressed in stomach and hindgut, indicating that dietary taurine is quickly absorbed when digestion begins and taurine endogenously used for bile salt conjugation may be recycled at the posterior end of the digestive tract. Therefore, these results suggest an enterohepatic recycling pathway for taurine in Senegalese sole, a process that may be important for maintenance of the taurine body levels in flatfish species

    Nutrigenomic study of lipid metabolism in Atlantic salmon (Salmo salar L.) : the effects of dietary plant oil inclusion

    Get PDF
    The two dietary trials conducted in the present study (Papers I-III) used dietary rapeseed oil fed in a regression design and a full plant oil blend replacement for fish oil, respectively. The metabolic response of Atlantic salmon was examined in relation to gene expression (Paper I-III), lipid storage (Paper II and III) and fatty acid oxidation (Paper II). Furthermore, intracellular fatty acid uptake and transport (Paper II) and lipoprotein metabolism (Paper III) was studied. In order to examine gene expression of lipid metabolic genes thorough technical validation and quality control of microarray studies (Paper I) and evaluation of reference genes for Q-PCR were prioritised (Paper IV). Dietary rapeseed oil induced D5 fatty acid desaturase mRNA expression (Paper I), and lipogenic enzyme activities were partially increased for Atlantic salmon fed high dietary inclusion of plant oils (Paper III). Dietary long term partial rapeseed oil inclusion resulted in reduced expression of several mitochondrial transport proteins, transcription factors, co-activators and signal transducers (Paper I). The expression of these proteins is known to be indirectly influenced by dietary fatty acids mediated through changes in membranes phospholipids compositions. Partial dietary rapeseed oil inclusion had no impact on FABP3 or FABP10 gene expression in Atlantic salmon liver or muscle tissues (Paper II). Nonetheless, a tendency for decreased FABP3 protein expression with decreasing inclusion of dietary rapeseed oil was observed. Overall, liver and muscle tissues of Atlantic salmon seem to express several FABPs, possibly linked to different metabolic functions. Relative FABP3 mRNA levels dominated in both red and white muscle tissues. Red muscle appeared to express higher levels of FABP3 than white muscle and heart. Liver FABP10 mRNA appeared to be expressed at high levels compared to liver FABP3. Modest changes in liver and muscle FABPs mRNA levels between different life stages were observed. Liver TAG stores, plasma lipid and LDL levels were significantly affected by dietary plant oil replacement in Atlantic salmon during a long term feeding experiment (Paper III). Current results indicate that high dietary plant oil inclusion increase liver TAG stores and decrease plasma lipid levels possibly through decreased VLDL synthesis. The expression of liver PPARγ increased prior to seawater transfer followed by a decrease, and then another increase towards the final sampling (22 months) which was correlated with increased liver TAG stores. mRNA expression of Atlantic salmon apolipoproteins seem to be regulated by dietary fatty acids (Paper I). Yet complex post translational mechanisms for lipoprotein assembly are believed to occur in Atlantic salmon as in mammals (Paper I and III). Through thorough evaluation of potential systemic and technical variation (Paper I and IV), the experimental design chosen enabled us to measure dietary and lifecycle gene expression variations in a system showing extrinsic and intrinsic variability (Paper I- III)

    Food intake, growth, and expression of neuropeptides regulating appetite in clown anemonefish (Amphiprion ocellaris) exposed to predicted climate changes

    Get PDF
    The clown anemonefish (Amphiprion ocellaris) is a common model species in studies assessing the impact of climate changes on tropical coral fish physiology, metabolism, growth, and stress. However, the basic endocrine principles for the control of food intake and energy homeostasis, under normal and elevated sea temperatures, in this species remain unknown. In this work, we studied food intake and growth in clown anemonefish reared at different temperatures and with different food availability. We also analyzed expression of genes in the melanocortin system, which is believed to be involved in the control of appetite and feeding behavior. These were two paralogues of pomc: pomca and pomcb; two paralogs of agrp: agrp1 and agrp2; and one mc4r-like. Groups of juvenile clown anemonefish were exposed to four experimental treatments combining (orthogonal design) two rearing temperatures: 28 °C (T28; normal) and 32 °C (T32; high) and two feeding regimes: one (1 M; 08:00) or three (3 M; 08:00, 12:00, 15:00) meals per day, fed to satiety by hand. The results showed that high temperature (T32) did not affect the average growth rate but induced a stronger asymmetrical individual body weight of the fish within the population (tank). Lower feeding frequency (1 M) resulted in lower growth rates at both rearing temperatures. Fish reared at high temperature had higher total daily food intake, which correlated with a lower expression of pomca, supporting an anorexigenic role of this gene. High temperature combined with restricted feeding induced higher agrp1 levels and resulted in a higher food intake in the morning meal compared to the control. This supports an orexigenic role for agrp1. mRNA levels of agrp2 responded differently from agrp1, supporting different roles for the paralogues. Levels of mc4r-like inversely correlated with fish body weight, indicating a possible size/stage dependence of gene expression. In conclusion, our results indicate that the melanocortin system is involved in adjusting appetite and food intake of clown anemonefish in response to elevated temperature and low food availability.publishedVersio

    Food intake, growth, and expression of neuropeptides regulating appetite in clown anemonefish (Amphiprion ocellaris) exposed to predicted climate changes

    No full text
    The clown anemonefish (Amphiprion ocellaris) is a common model species in studies assessing the impact of climate changes on tropical coral fish physiology, metabolism, growth, and stress. However, the basic endocrine principles for the control of food intake and energy homeostasis, under normal and elevated sea temperatures, in this species remain unknown. In this work, we studied food intake and growth in clown anemonefish reared at different temperatures and with different food availability. We also analyzed expression of genes in the melanocortin system, which is believed to be involved in the control of appetite and feeding behavior. These were two paralogues of pomc: pomca and pomcb; two paralogs of agrp: agrp1 and agrp2; and one mc4r-like. Groups of juvenile clown anemonefish were exposed to four experimental treatments combining (orthogonal design) two rearing temperatures: 28 °C (T28; normal) and 32 °C (T32; high) and two feeding regimes: one (1 M; 08:00) or three (3 M; 08:00, 12:00, 15:00) meals per day, fed to satiety by hand. The results showed that high temperature (T32) did not affect the average growth rate but induced a stronger asymmetrical individual body weight of the fish within the population (tank). Lower feeding frequency (1 M) resulted in lower growth rates at both rearing temperatures. Fish reared at high temperature had higher total daily food intake, which correlated with a lower expression of pomca, supporting an anorexigenic role of this gene. High temperature combined with restricted feeding induced higher agrp1 levels and resulted in a higher food intake in the morning meal compared to the control. This supports an orexigenic role for agrp1. mRNA levels of agrp2 responded differently from agrp1, supporting different roles for the paralogues. Levels of mc4r-like inversely correlated with fish body weight, indicating a possible size/stage dependence of gene expression. In conclusion, our results indicate that the melanocortin system is involved in adjusting appetite and food intake of clown anemonefish in response to elevated temperature and low food availability

    Metabolic rates, feed intake, appetite control, and gut transit of clownfish Amphiprion ocellaris exposed to increased temperature and limited feed availability

    Get PDF
    Episodes of elevated temperature, combined with lower feed availability, are among the predicted scenarios of climate change representing a challenge for coral reef fish. We investigated the response of clownfish (Amphiprion ocellaris) to a scenario in which it received a single meal to satiety after 48 h fasting at 32 °C (climate change scenario) and 28 °C (control). We analysed the metabolic rate (MR), feed intake, gut transit, and expression of selected brain neuropeptides and one receptor believed to be involved in appetite control. Fish at 32 °C ingested 17.9% less feed and had a faster gut transit than did fish at 28 °C. MR in the unfed fish was 31% higher at 32 °C compared to 28 °C. In the fed fish, postprandial MR at 28 °C was 30% higher compared to that of unfed fish, while at 32 °C it was only 15% higher. The expression of agrp1 did not differ between unfed and refed fish. The levels of both pomca and mc4r increased immediately after the meal and subsequently declined, suggesting a possible anorexic role for these genes. Notably, this pattern was accelerated in fish kept at 32 °C compared with that in fish kept at 28 °C. The dynamics of these changes in expression correspond to a faster gut transition of ingested feed at elevated temperatures. For both agrp2 and pomcb there was an increase in expression following feeding in fish maintained at 32 °C, which was not observed in fish kept at 28 °C. These results suggest that low feed availability and elevated temperature stimulate anorexigenic pathways in clownfish, resulting in significantly lower feed intake despite the temperature-induced increase in metabolic rate. This may be a mechanism to ameliorate the decrease in aerobic scope that results from higher temperatures
    corecore