43 research outputs found

    Re-refinement from deposited X-ray data can deliver improved models for most PDB entries

    Get PDF
    An evaluation of validation and real-space intervention possibilities for improving existing automated (re-)refinement methods

    Whole-proteome structures shed new light on posttranslational modifications

    Get PDF
    Accurate but protein-only AlphaFold models may show structural fingerprints of likely posttranslational modifications (PTMs). In this issue of PLOS Biology, Bludau and colleagues add a functional context to models by combining them with readily available proteomics results

    Model building and beyond

    Get PDF
    An introduction to the Proceedings of the 2020 CCP4 Study Weekend on model building which are available as a virtual issue at https://journals.iucr.org/special_issues/2020/CCP42020/

    Updated restraint dictionaries for carbohydrates in the pyranose form

    Get PDF
    Restraint dictionaries are used during macromolecular structure refinement to encapsulate intramolecular connectivity and geometric information. These dictionaries allow previously determined 'ideal' values of features such as bond lengths, angles and torsions to be used as restraint targets. During refinement, restraints influence the model to adopt a conformation that agrees with prior observation. This is especially important when refining crystal structures of glycosylated proteins, as their resolutions tend to be worse than those of non­glycosylated proteins. Pyranosides, the overwhelming majority component in all forms of protein glycosylation, often display conformational errors in crystal structures. Whilst many of these flaws usually relate to model building, refinement issues may also have their root in suboptimal restraint dictionaries. In order to avoid subsequent misinterpretation and to improve the quality of all pyranose monosaccharide entries in the CCP4 Monomer Library, new dictionaries with improved ring torsion restraints, coordinates reflecting the lowest-energy ring pucker and updated geometry have been produced and evaluated. These new dictionaries are now part of the CCP4 Monomer Library and will be released with CCP4 version 8.0

    High-resolution structure of the M14-type cytosolic carboxypeptidase from <em>Burkholderia cenocepacia </em>refined exploiting <em>PDB_REDO </em>strategies

    Get PDF
    A potential cytosolic metallocarboxypeptidase from Burk­holderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB_REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn(2+)-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn(2+), where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1′ recognition subsite that suggests specificity towards an acidic substrate

    Analysis and validation of overall N-glycan conformation in Privateer

    Get PDF
    The oligosaccharides in N-glycosylation provide key structural and functional contributions to a glycoprotein. These contributions are dependent on the composition and overall conformation of the glycans. The Privateer software allows structural biologists to evaluate and improve the atomic structures of carbohydrates, including N-glycans; this software has recently been extended to check glycan composition through the use of glycomics data. Here, a broadening of the scope of the software to analyse and validate the overall conformation of N-glycans is presented, focusing on a newly compiled set of glycosidic linkage torsional preferences harvested from a curated set of glycoprotein models

    Steroid Binding to Autotaxin Links Bile Salts and Lysophosphatidic Acid Signalling

    Get PDF
    Autotaxin (ATX) generates the lipid mediator lysophosphatidic acid (LPA). ATX-LPA signalling is involved in multiple biological and pathophysiological processes, including vasculogenesis, fibrosis, cholestatic pruritus and tumour progression. ATX has a tripartite active site, combining a hydrophilic groove, a hydrophobic lipid-binding pocket and a tunnel of unclear function. We present crystal structures of rat ATX bound to 7α-hydroxycholesterol and the bile salt tauroursodeoxycholate (TUDCA), showing how the tunnel selectively binds steroids. A structure of ATX simultaneously harbouring TUDCA in the tunnel and LPA in the pocket, together with kinetic analysis, reveals that bile salts act as partial non-competitive inhibitors of ATX, thereby attenuating LPA receptor activation. This unexpected interplay between ATX-LPA signalling and select steroids, notably natural bile salts, provides a molecular basis for the emerging association of ATX with disorders associated with increased circulating levels of bile salts. Furthermore, our findings suggest potential clinical implications in the use of steroid drugs

    The missing link: covalent linkages in structural models.

    Get PDF
    Covalent linkages between constituent blocks of macromolecules and ligands have been subject to inconsistent treatment during the model-building, refinement and deposition process. This may stem from a number of sources, including difficulties with initially detecting the covalent linkage, identifying the correct chemistry, obtaining an appropriate restraint dictionary and ensuring its correct application. The analysis presented herein assesses the extent of problems involving covalent linkages in the Protein Data Bank (PDB). Not only will this facilitate the remediation of existing models, but also, more importantly, it will inform and thus improve the quality of future linkages. By considering linkages of known type in the CCP4 Monomer Library (CCP4-ML), failure to model a covalent linkage is identified to result in inaccurate (systematically longer) interatomic distances. Scanning the PDB for proximal atom pairs that do not have a corresponding type in the CCP4-ML reveals a large number of commonly occurring types of unannotated potential linkages; in general, these may or may not be covalently linked. Manual consideration of the most commonly occurring cases identifies a number of genuine classes of covalent linkages. The recent expansion of the CCP4-ML is discussed, which has involved the addition of over 16 000 and the replacement of over 11 000 component dictionaries using AceDRG. As part of this effort, the CCP4-ML has also been extended using AceDRG link dictionaries for the aforementioned linkage types identified in this analysis. This will facilitate the identification of such linkage types in future modelling efforts, whilst concurrently easing the process involved in their application. The need for a universal standard for maintaining link records corresponding to covalent linkages, and references to the associated dictionaries used during modelling and refinement, following deposition to the PDB is emphasized. The importance of correctly modelling covalent linkages is demonstrated using a case study, which involves the covalent linkage of an inhibitor to the main protease in various viral species, including SARS-CoV-2. This example demonstrates the importance of properly modelling covalent linkages using a comprehensive restraint dictionary, as opposed to just using a single interatomic distance restraint or failing to model the covalent linkage at all

    Modelling covalent linkages in CCP4.

    Get PDF
    In this contribution, the current protocols for modelling covalent linkages within the CCP4 suite are considered. The mechanism used for modelling covalent linkages is reviewed: the use of dictionaries for describing changes to stereochemistry as a result of the covalent linkage and the application of link-annotation records to structural models to ensure the correct treatment of individual instances of covalent linkages. Previously, linkage descriptions were lacking in quality compared with those of contemporary component dictionaries. Consequently, AceDRG has been adapted for the generation of link dictionaries of the same quality as for individual components. The approach adopted by AceDRG for the generation of link dictionaries is outlined, which includes associated modifications to the linked components. A number of tools to facilitate the practical modelling of covalent linkages available within the CCP4 suite are described, including a new restraint-dictionary accumulator, the Make Covalent Link tool and AceDRG interface in Coot, the 3D graphical editor JLigand and the mechanisms for dealing with covalent linkages in the CCP4i2 and CCP4 Cloud environments. These integrated solutions streamline and ease the covalent-linkage modelling workflow, seamlessly transferring relevant information between programs. Current recommended practice is elucidated by means of instructive practical examples. By summarizing the different approaches to modelling linkages that are available within the CCP4 suite, limitations and potential pitfalls that may be encountered are highlighted in order to raise awareness, with the intention of improving the quality of future modelled covalent linkages in macromolecular complexes
    corecore