16 research outputs found

    Common Problems, Common Data Model Solutions: Evidence Generation for Health Technology Assessment

    Get PDF
    There is growing interest in using observational data to assess the safety, effectiveness, and cost effectiveness of medical technologies, but operational, technical, and methodological challenges limit its more widespread use. Common data models and federated data networks offer a potential solution to many of these problems. The open-source Observational and Medical Outcomes Partnerships (OMOP) common data model standardises the structure, format, and terminologies of otherwise disparate datasets, enabling the execution of common analytical code across a federated data network in which only code and aggregate results are shared. While common data models are increasingly used in regulatory decision making, relatively little attention has been given to their use in health technology assessment (HTA). We show that the common data model has the potential to facilitate access to relevant data, enable multidatabase studies to enhance statistical power and transfer results across populations and settings to meet the needs of local HTA decision makers, and validate findings. The use of open-source and standardised analytics improves transparency and reduces coding errors, thereby increasing confidence in the results. Further engagement from the HTA community is required to inform the appropriate standards for mapping data to the common data model and to design tools that can support evidence generation and decision making

    Common Problems, Common Data Model Solutions: Evidence Generation for Health Technology Assessment

    Get PDF
    There is growing interest in using observational data to assess the safety, effectiveness, and cost effectiveness of medical technologies, but operational, technical, and methodological challenges limit its more widespread use. Common data models and federated data networks offer a potential solution to many of these problems. The open-source Observational and Medical Outcomes Partnerships (OMOP) common data model standardises the structure, format, and terminologies of otherwise disparate datasets, enabling the execution of common analytical code across a federated data network in which only code and aggregate results are shared. While common data models are increasingly used in regulatory decision making, relatively little attention has been given to their use in health technology assessment (HTA). We show that the common data model has the potential to facilitate access to relevant data, enable multidatabase studies to enhance statistical power and transfer results across populations and settings to meet the needs of local HTA decision makers, and validate findings. The use of open-source and standardised analytics improves transparency and reduces coding errors, thereby increasing confidence in the results. Further engagement from the HTA community is required to inform the appropriate standards for mapping data to the common data model and to design tools that can support evidence generation and decision making

    The sequences of 150,119 genomes in the UK Biobank

    Get PDF
    Detailed knowledge of how diversity in the sequence of the human genome affects phenotypic diversity depends on a comprehensive and reliable characterization of both sequences and phenotypic variation. Over the past decade, insights into this relationship have been obtained from whole-exome sequencing or whole-genome sequencing of large cohorts with rich phenotypic data(1,2). Here we describe the analysis of whole-genome sequencing of 150,119 individuals from the UK Biobank(3). This constitutes a set of high-quality variants, including 585,040,410 single-nucleotide polymorphisms, representing 7.0% of all possible human single-nucleotide polymorphisms, and 58,707,036 indels. This large set of variants allows us to characterize selection based on sequence variation within a population through a depletion rank score of windows along the genome. Depletion rank analysis shows that coding exons represent a small fraction of regions in the genome subject to strong sequence conservation. We define three cohorts within the UK Biobank: a large British Irish cohort, a smaller African cohort and a South Asian cohort. A haplotype reference panel is provided that allows reliable imputation of most variants carried by three or more sequenced individuals. We identified 895,055 structural variants and 2,536,688 microsatellites, groups of variants typically excluded from large-scale whole-genome sequencing studies. Using this formidable new resource, we provide several examples of trait associations for rare variants with large effects not found previously through studies based on whole-exome sequencing and/or imputation

    Coding variants in RPL3L and MYZAP increase risk of atrial fibrillation

    Get PDF
    Source at https://doi.org/10.1038/s42003-018-0068-9. Most sequence variants identified hitherto in genome-wide association studies (GWAS) of atrial fibrillation are common, non-coding variants associated with risk through unknown mechanisms. We performed a meta-analysis of GWAS of atrial fibrillation among 29,502 cases and 767,760 controls from Iceland and the UK Biobank with follow-up in samples from Norway and the US, focusing on low-frequency coding and splice variants aiming to identify causal genes. We observe associations with one missense (OR = 1.20) and one splice-donor variant (OR = 1.50) in RPL3L, the first ribosomal gene implicated in atrial fibrillation to our knowledge. Analysis of 167 RNA samples from the right atrium reveals that the splice-donor variant in RPL3L results in exon skipping. We also observe an association with a missense variant in MYZAP (OR = 1.38), encoding a component of the intercalated discs of cardiomyocytes. Both discoveries emphasize the close relationship between the mechanical and electrical function of the heart

    Graphtyper enables population-scale genotyping using pangenome graphs.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowA fundamental requirement for genetic studies is an accurate determination of sequence variation. While human genome sequence diversity is increasingly well characterized, there is a need for efficient ways to use this knowledge in sequence analysis. Here we present Graphtyper, a publicly available novel algorithm and software for discovering and genotyping sequence variants. Graphtyper realigns short-read sequence data to a pangenome, a variation-aware graph structure that encodes sequence variation within a population by representing possible haplotypes as graph paths. Our results show that Graphtyper is fast, highly scalable, and provides sensitive and accurate genotype calls. Graphtyper genotyped 89.4 million sequence variants in the whole genomes of 28,075 Icelanders using less than 100,000 CPU days, including detailed genotyping of six human leukocyte antigen (HLA) genes. We show that Graphtyper is a valuable tool in characterizing sequence variation in both small and population-scale sequencing studies

    Loss-of-Function Variants in the Tumor-Suppressor Gene Confer Increased Cancer Risk.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowThe success of genome-wide association studies (GWAS) in identifying common, low-penetrance variant-cancer associations for the past decade is undisputed. However, discovering additional high-penetrance cancer mutations in unknown cancer predisposing genes requires detection of variant-cancer association of ultra-rare coding variants. Consequently, large-scale next-generation sequence data with associated phenotype information are needed. Here, we used genotype data on 166,281 Icelanders, of which, 49,708 were whole-genome sequenced and 408,595 individuals from the UK Biobank, of which, 41,147 were whole-exome sequenced, to test for association between loss-of-function burden in autosomal genes and basal cell carcinoma (BCC), the most common cancer in Caucasians. A total of 25,205 BCC cases and 683,058 controls were tested. Rare germline loss-of-function variants in PTPN14 conferred substantial risks of BCC (OR, 8.0; P = 1.9 × 10-12), with a quarter of carriers getting BCC before age 70 and over half in their lifetime. Furthermore, common variants at the PTPN14 locus were associated with BCC, suggesting PTPN14 as a new, high-impact BCC predisposition gene. A follow-up investigation of 24 cancers and three benign tumor types showed that PTPN14 loss-of-function variants are associated with high risk of cervical cancer (OR, 12.7, P = 1.6 × 10-4) and low age at diagnosis. Our findings, using power-increasing methods with high-quality rare variant genotypes, highlight future prospects for new discoveries on carcinogenesis. SIGNIFICANCE: This study identifies the tumor-suppressor gene PTPN14 as a high-impact BCC predisposition gene and indicates that inactivation of PTPN14 by germline sequence variants may also lead to increased risk of cervical cancer.Common Fund of the Office of the Director of the National Institutes of Health United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Cancer Institute (NCI) United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Human Genome Research Institute (NHGRI) United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Heart Lung & Blood Institute (NHLBI) United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Drug Abuse (NIDA) United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute of Mental Health (NIMH) United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute of Neurological Disorders & Stroke (NINDS

    Coding variants in RPL3L and MYZAP increase risk of atrial fibrillation

    No full text
    Most sequence variants identified hitherto in genome-wide association studies (GWAS) of atrial fibrillation are common, non-coding variants associated with risk through unknown mechanisms. We performed a meta-analysis of GWAS of atrial fibrillation among 29,502 cases and 767,760 controls from Iceland and the UK Biobank with follow-up in samples from Norway and the US, focusing on low-frequency coding and splice variants aiming to identify causal genes. We observe associations with one missense (OR = 1.20) and one splice-donor variant (OR = 1.50) in RPL3L, the first ribosomal gene implicated in atrial fibrillation to our knowledge. Analysis of 167 RNA samples from the right atrium reveals that the splice-donor variant in RPL3L results in exon skipping. We also observe an association with a missense variant in MYZAP (OR = 1.38), encoding a component of the intercalated discs of cardiomyocytes. Both discoveries emphasize the close relationship between the mechanical and electrical function of the heart

    Predicted loss and gain of function mutations in ACO1 are associated with erythropoiesis.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadHemoglobin is the essential oxygen-carrying molecule in humans and is regulated by cellular iron and oxygen sensing mechanisms. To search for novel variants associated with hemoglobin concentration, we performed genome-wide association studies of hemoglobin concentration using a combined set of 684,122 individuals from Iceland and the UK. Notably, we found seven novel variants, six rare coding and one common, at the ACO1 locus associating with either decreased or increased hemoglobin concentration. Of these variants, the missense Cys506Ser and the stop-gained Lys334Ter mutations are specific to eight and ten generation pedigrees, respectively, and have the two largest effects in the study (EffectCys506Ser = -1.61 SD, CI95 = [-1.98, -1.35]; EffectLys334Ter = 0.63 SD, CI95 = [0.36, 0.91]). We also find Cys506Ser to associate with increased risk of persistent anemia (OR = 17.1, P = 2 × 10-14). The strong bidirectional effects seen in this study implicate ACO1, a known iron sensing molecule, as a major homeostatic regulator of hemoglobin concentration.UCL Hospitals NIHR Biomedical Research Centr

    A loss-of-function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowNasal polyps (NP) are lesions on the nasal and paranasal sinus mucosa and are a risk factor for chronic rhinosinusitis (CRS). We performed genome-wide association studies on NP and CRS in Iceland and the UK (using UK Biobank data) with 4,366 NP cases, 5,608 CRS cases, and >700,000 controls. We found 10 markers associated with NP and 2 with CRS. We also tested 210 markers reported to associate with eosinophil count, yielding 17 additional NP associations. Of the 27 NP signals, 7 associate with CRS and 13 with asthma. Most notably, a missense variant in ALOX15 that causes a p.Thr560Met alteration in arachidonate 15-lipoxygenase (15-LO) confers large genome-wide significant protection against NP (P = 8.0 × 10National Institute of Dental and Craniofacial Research of the National Institutes of Healt
    corecore