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Abstract
There is growing interest in using observational data to assess the safety, effectiveness, and cost effectiveness of medical 
technologies, but operational, technical, and methodological challenges limit its more widespread use. Common data models 
and federated data networks offer a potential solution to many of these problems. The open-source Observational and Medi-
cal Outcomes Partnerships (OMOP) common data model standardises the structure, format, and terminologies of otherwise 
disparate datasets, enabling the execution of common analytical code across a federated data network in which only code 
and aggregate results are shared. While common data models are increasingly used in regulatory decision making, relatively 
little attention has been given to their use in health technology assessment (HTA). We show that the common data model 
has the potential to facilitate access to relevant data, enable multidatabase studies to enhance statistical power and transfer 
results across populations and settings to meet the needs of local HTA decision makers, and validate findings. The use of 
open-source and standardised analytics improves transparency and reduces coding errors, thereby increasing confidence in 
the results. Further engagement from the HTA community is required to inform the appropriate standards for mapping data 
to the common data model and to design tools that can support evidence generation and decision making.

Key Points for Decision Makers 

The observational and medical outcomes partnerships 
(OMOP) common data model standardises the structure 
and coding systems of otherwise disparate datasets, 
enabling the application of standardised and validated 
analytical code across a federated data network without 
the need to share patient data.

Common data models have the potential to overcome 
some of the key operational, methodological, and techni-
cal challenges of using observational data in health tech-
nology assessment (HTA), particularly by enhancing the 
interoperability of data and the transparency of analyses.

To ensure the usefulness of the OMOP common data 
model to HTA, it is imperative that the HTA community 
engages with this work to develop tools and processes to 
support reliable, timely, and transparent evidence genera-
tion in HTA.
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1 Introduction

There is growing interest in the use of observational data 
(or, ‘real-world data’) to assess the safety, effectiveness, and 
cost effectiveness of medical technologies [1, 2]. But several 
barriers limit its more widespread use, including challenges 
in identifying and accessing relevant data, in ensuring the 
quality and representativeness of data, and in the differences 
between datasets in terms of their structure, content, and 
coding systems used [1, 3, 4].

Common data models and distributed data networks offer 
a possible solution to these problems [4–9]. A common data 
model standardises the structure, and sometimes also the 
coding systems, of otherwise disparate datasets, enabling 
the application of standardised and validated analytical code 
across datasets. Datasets conforming to a common data 
model can be accessed through federated data networks, 
in which all data reside locally in the secure environment 
of the data custodian(s). Analytical code is then brought to 
the data and executed locally, with only aggregated results 
returned. This puts the data custodian in full control and 
avoids the need to share patient-level data, thereby at least 
partially addressing data privacy and governance concerns. 
In so doing, it may also increase the availability of data for 
healthcare research. Common data models can enhance the 
transparency and reliability of medical research and ensure 
efficient and timely generation of evidence for decision 
making.

Several common data models are in widespread use 
[9], including the US FDA Sentinel, which is used pre-
dominantly for post-marketing drug safety surveillance but 
increasingly also for effectiveness research [4, 10], and the 
open-source Observational and Medical Outcomes Partner-
ships (OMOP) common data model, which has been used to 
study treatment pathways, comparative effectiveness, safety, 
and patient-level prediction [8, 11–15]. The European Med-
icines Agency (EMA) will use the OMOP common data 
model to conduct multicentre cohort studies on the use of 
medicines in patients with coronavirus 2019 (COVID-19) 
[16]. The EMA are also looking to establish a data network 
for the proactive monitoring of benefit-risk profiles of new 
medicines over their life cycles, which could use a common 
data model approach [6, 17, 18]. To date, relatively little 
attention has been given to the usefulness of these models 
and data networks for supporting health technology assess-
ment (HTA).

Here, we discuss the potential value of the OMOP com-
mon data model for use in HTA, for both evidence gen-
eration and healthcare decision making, and identify prior-
ity areas for further development to ensure its potential is 
realised.

2  The Use of Observational Data in Health 
Technology Assessment (HTA)

HTA is used to inform clinical practice and the reimburse-
ment, coverage, and/or pricing of medical technologies, 
including drugs. While the exact methods and uses of HTA 
differ between healthcare systems, substantial common-
alities exist [19–21]. Most HTA bodies require a relative 
effectiveness assessment of one or more technologies com-
pared with standard of care and prefer data on final clinical 
endpoints (such as survival) and patient-reported outcomes 
(such as health-related quality of life) [21, 22]. Often esti-
mates of relative effectiveness need to be provided over the 
long term (e.g. patients’ lifetime), and this may necessitate 
economic modelling. Some HTA bodies also require evi-
dence on (long-term) cost effectiveness, which requires an 
assessment of the additional cost of achieving additional 
benefits, and budget impact analysis, i.e. the gross or net 
budgetary impact of implementing a technology in a health 
system. Most HTA bodies and payers prefer data pertaining 
directly to their jurisdiction.

The potential uses of observational data in HTA are large. 
There is wide acceptance of its use for assessing safety, par-
ticularly for rare outcomes and over longer time periods, for 
describing patient characteristics and treatment patterns in 
clinical practice, and for estimating epidemiological param-
eters, including disease incidence, event rates, overall sur-
vival, healthcare utilisation and costs, and health-related 
quality of life [23, 24]. It could also be used to validate 
modelling decisions, e.g. extrapolation of overall survival 
or from surrogate to final clinical endpoints, but its use here, 
so far, is limited [25]. To inform local reimbursement and 
pricing decisions, it is important that such data reflect the 
local populations and healthcare settings.

The role of non-randomised data in establishing compara-
tive effectiveness is more controversial [23, 26, 27]. In prin-
ciple, it could be used to support decisions in the absence of 
reliable or sufficient randomised controlled trial (RCT) data 
[28–32] or to supplement RCTs with evidence from routine 
clinical practice on long-term outcomes or outcomes with 
immature data from trials to validate findings or translate 
results to different populations and settings [23, 25, 33–36]. 
Increasingly, such data are used as part of managed entry 
arrangements, including commissioning through evaluation 
and outcomes-based contracting [37, 38]. However, despite 
growing calls for increased use of observational data in deci-
sion making, its role remains limited [23]. We follow the 
OPTIMAL framework in categorising barriers to the wider 
use of such data into operational, technical, and methodo-
logical challenges [39], supplemented by additional consid-
erations where necessary [1, 3].
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Operational challenges to the use of observational data 
include issues of feasibility, governance, and sustainability, 
which complicate access to, and the use of, data. A limited 
number of European datasets are of sufficient quality for 
use in decision making, particularly in Eastern and South-
ern Europe [40]. Furthermore, it can be difficult to identify 
datasets containing relevant information or to understand 
the quality of the data with respect to a planned application 
[41]. When relevant, high-quality data are identified, it may 
not be accessible because of governance restrictions on data 
sharing, lack of patient consent, or prohibitively high access 
costs. Beyond the direct costs of data acquisition, substan-
tial investments may be needed in staff and infrastructure to 
manage, analyse, and interpret such data [42]. These chal-
lenges limit the opportunity to generate robust, relevant, and 
timely information to support local decision making. Finally, 
transparency is often lacking in the conduct of studies using 
observational data, which limits the acceptability of results 
for decision making [43, 44].

Technical constraints relate to the contents and quality 
of data and impair the ability to generate robust and valid 
results. Most observational datasets are not designed for 
research purposes but rather to support clinical care or 
healthcare administration. The quality of observational data 
varies, including in the extent of missing data, measurement 
reliability, coding accuracy, misclassification of exposures 
and outcomes, or insufficient numbers of patients [1, 45]. 
Certain types of data are routinely missing from observa-
tional databases, including drugs dispensed in secondary 
care or over the counter [40] and patient-reported outcomes 
[46]. A further complication is data fragmentation, where 
information about a patient’s care pathway is stored across 
disparate datasets. Data linkage is essential to adequately 
address many research questions, but operational constraints 
due to varying governance processes may limit the ability to 
link datasets in a timely fashion.

A final major technical constraint is the substantial vari-
ation between datasets in terms of their structure, contents, 
and the coding systems used to represent clinical and health 
system data. Datasets can differ in several ways, includ-
ing in their structure (e.g. single data frame vs. relational 
database design), contents (i.e. what data are included), and 
in the representation of data (i.e. how data are coded). For 
instance, numerous competing coding and classification sys-
tems are used to represent clinical diagnoses (e.g. Standard 
Nomenclature of Medicine [SNOMED], Medical Dictionary 
for Regulatory Activities [MedDRA], International Classifi-
cation of Diseases [ICD], Read), pharmaceuticals (e.g. Brit-
ish National Formulary, RxNorm, Anatomical Therapeutic 
Chemical [ATC] classification), procedures (e.g. OPCS, 
ICD-10-PCS), and other types of clinical and health system 
data. Conventions for any given vocabulary are also subject 
to change over time. These differences impose a burden on 

analysts who are required to understand the idiosyncrasies 
of each dataset and coding system, and their developments 
over time, which limits the opportunity to validate analyses 
in different datasets or to translate results to different popula-
tions or settings. It also complicates the interpretation of the 
results for those who use the evidence, including regulators, 
HTA bodies, payers, patients, and clinicians.

Finally, methodological challenges arise from the inher-
ent limitations of observational databases as they are not 
designed to produce causal associations [47]. Biases may 
arise because of poor-quality data or patient selection, 
whereby the associations observed among those in a data-
base do not apply to the wider population of interest, and 
because of confounding, whereby patients are allocated dif-
ferently to exposures based on unobserved or poorly char-
acterised characteristics [47, 48]. Detailed consideration 
must be given to these potential biases in study design and, 
where appropriate, advanced methodologies must be used 
to address them.

3  The OMOP Common Data Model

3.1  What is a Common Data Model?

The main purpose of common data models is to address 
problems caused by poor data interoperability. They do this 
by imposing some level of standardisation on otherwise dis-
parate data sources. Several open-source common data mod-
els are in use that differ in a number of important respects, 
including the extent of the standardisation, for instance, 
whether they standardise just the structure (FDA Sentinel) 
or also the semantic representation of data (OMOP); the 
coverage of the standardisation, whether only for selected 
types of clinical data (FDA Sentinel) or an attempt to be 
comprehensive, including all clinical and health system data 
(OMOP); and in their applications [9, 11–14]. These differ-
ences may impact on the timeliness with which high-quality 
multidatabase studies can be conducted, the transparency 
of analyses, and the adaptability of the analysis to specific 
research questions [4].

An alternative approach to multidatabase studies is to 
allow local data extraction and analysis following a common 
protocol [49, 50]. While this has been shown to produce reli-
able results in some applications [50], differences between 
datasets may arise because of differences in data curation, 
implementation of the analysis, and coding errors. Alterna-
tively, aggregated or patient-level datasets can be pooled fol-
lowing a study-specific common data model, e.g. as devel-
oped in the European Union Adverse Drug Reaction project 
[5]. This allows the sharing of common analytics, reducing 
between-dataset variation in study conduct, but may restrict 
the analytical choices (e.g. large-scale propensity score 
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matching). In some cases, data pooling will be prohibited 
by data governance and privacy concerns.

3.2  The OHDSI Community

The OMOP common data model has its origins in a pro-
gramme of work by the OMOP, designed to develop meth-
ods to inform the FDA’s active safety surveillance activities 
[8, 51, 52]. Since 2014, the OMOP common data model 
has been maintained by the open-science Observational 
Health Data Sciences and Informatics (OHDSI, pronounced 
‘Odyssey’) community (https ://www.ohdsi .org). OHDSI 
also develops open-source software to support high-quality 
research, engages in methodological work to establish best 
practices, and performs many multidatabase studies across 
its network. The common data model and open-source tools 
are shared on OHDSI’s GitHub account (https ://githu b.com/
OHDSI /), and discussions take place on a dedicated open 
forum (https ://forum s.ohdsi .org/). For more information 
about OHDSI and the analytical pipelines see The Book of 
OHDSI [8].

3.3  OMOP Common Data Model

The OMOP common data model has a ‘person-centric rela-
tional database’ design similar to many electronic health-
care record systems. This means that clinical (e.g. signs, 
symptoms, and diagnoses, drugs, procedures, devices, 
measurements, and health surveys) and health system data 
(e.g. healthcare provider, care site, and costs) are organised 
into pre-defined tables, which are linked, either directly or 
indirectly, to patients (Fig. 1) [8]. Each table stores ‘events’ 
(i.e. clinical or health system data) with defined content, 
format, and representation. The OMOP common data 
model contains two standardised health economic tables. 
The first contains information about a patient’s health 
insurance arrangements, and the second contains data on 
costs, charges, or expenditures related to specific episodes 
of care (e.g. inpatient stay, ambulatory visit, drug prescrip-
tion). This structure reflects the origins of the common data 
model in the USA, with a largely insurance-based system of 
healthcare. The OMOP common data model is designed to 

Fig. 1  Overview of the OMOP common data model version 6.0 [8]. 
The tables relating to standardised vocabularies provide comprehen-
sive information on mappings from between source and standard con-

cepts and hierarchies for standard concepts (e.g. concept_ancestor). 
CDM common data model, NLP natural language processing

https://www.ohdsi.org
https://github.com/OHDSI/
https://github.com/OHDSI/
https://forums.ohdsi.org/
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be as comprehensive as possible to allow a wide variety of 
research questions to be addressed.

Standard vocabularies are used to normalise the meaning 
of data within the common data model and are defined sepa-
rately for different types of data (i.e. data residing in different 
tables). The SNOMED system is used to represent clinical 
data, RxNorm to represent drugs, and Logical Observation 
Identifiers Names and Codes (LOINC) to represent clinical 
measurements. RxNorm has been extended within OMOP to 
include all authorised drugs in Europe using the Article 57 
database. Other types of data, including procedures, devices, 
and health surveys, have more than one standard vocabu-
lary because of the absence of a comprehensive standard. 
These standard vocabularies have hierarchies, which allows 
users to select a single concept and any descendants of that 
concept in defining a cohort or outcome set. Some standard 
vocabularies can also be linked to hierarchical classifica-
tion systems such as MedDRA for clinical conditions and 
ATC for drugs. The codes used in the original data are also 
retained within the common data model and can be used 
by analysts. Figure 2 provides a visual illustration of the 
vocabularies for the condition domain.

Mapping to OMOP is performed by a multidisciplinary 
team involving mapping and vocabulary experts, local data 
experts, and clinicians who together use open-source tools 
to construct an ‘execute, transform, and load’ (ETL) pro-
cedure. The mapping of a given dataset to the common 
data model is intended to be separated from any particular 

analysis. Bespoke mapping tables may need be created or 
updated to represent data in local vocabularies [53–55]. It is 
essential that the ETL is maintained over time, for instance, 
to respond to changes in the source data, coding errors in 
the ETL, or the release of new OMOP vocabularies. This 
requires highly developed and robust quality assurance 
processes [56]. Finally, it should be noted that OMOP has 
been predominantly used for claims databases and electronic 
health records. Further work is ongoing to better support the 
representation of other data types (including patient regis-
tries), specific diseases (including oncology), and health data 
(including genetic and biomarker data).

3.4  Standardised Analytical Tools

The OHDSI collaborative has developed a number of open-
source applications and tools that support the mapping of 
datasets to the OMOP common data model, data quality 
assessment, data analysis, and the conduct of multidatabase 
studies across a federated data network [8].

The data quality dashboard is designed to enable evalu-
ation of the data quality of any given observational dataset. 
It does this by running a series of prespecified data qual-
ity checks about the OMOP common data model following 
the framework by Kahn et al. [57]. In this framework, data 
quality is defined in relation to its conformance (including 
value, relational, and computational conformance), com-
pleteness, and plausibility (including uniqueness, atemporal, 

Fig. 2  A visual representation of vocabularies and their relationships 
in the condition domain of the OMOP common data model [8]. ICD 
International Classification of Diseases, ICD-9 ICD, Ninth Revision, 
ICD-10-CM ICD Tenth Revision, Clinical Modification, MedDRA 

Medical Dictionary for Regulatory Activities, MeSH medical subject 
heading, SNOMED-CT Standard Nomenclature of Medicine Clinical 
Terminology
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and temporal plausibility). These are assessed by verifying 
against organisational data or validating against an accepted 
gold standard.

Data exploration and analyses can be conducted using 
the ATLAS user interface (https ://atlas .ohdsi .org/) and/or 
open-source software such as R. Standardised tools have 
been created to support the characterisation of cohorts in 
terms of baseline characteristics and treatment and disease 
pathways; patient-level prediction, e.g. for estimating the 
risk of an adverse event or patient stratification; and popu-
lation-level estimation, e.g. for safety surveillance and com-
parative-effectiveness estimation. Where standardised tools 
are used, interactive dashboards are available to display key 
results and outputs of various diagnostic checks. While the 
tools allow for considerable flexibility in user specifications, 
they also impose some constraints on the analyst in line with 
community-defined standards of best practice. Analyses can 
also be performed without utilising these tools by writing 
bespoke analysis code and using existing R packages.

The common data model and analytical tools are not fixed 
but are developed in collaboration with the OHDSI commu-
nity and according to the priorities of its members. Where 
developments and new tools are made, these will be avail-
able to all users.

3.5  Data Networks

A common data model is most useful when it is part of large 
data network. In federated (or distributed) data networks, 
data ownership is retained by the data custodian (or licensed 
data holders), and analysis code can be run against the data 
in the local environment, subject to standard data access 
approvals, with only aggregated results returned to the ana-
lysts [9]. This recognises the governance and infrastructural 
constraints that limit the ability of external institutions to 
access individual patient data. This stands in contrast to 
pooled data networks, where individual patient-level data 
are collated centrally and made available for analysis.

The OMOP common data are used (and maintained) 
by the OHDSI network [51]. As of 2019, the OHDSI net-
work had mapped over 100 datasets to the OMOP common 
data model, encompassing more than 1 billion patients [8]. 
There is growing interest in the use of the OMOP common 
data model, particularly for regulatory purposes [6, 17]. In 
response to this, the Innovative Medicines Initiative has 
funded the European Health Data and Evidence Network 
(EHDEN, https ://www.ehden .eu) public–private partnership, 
which aims to establish a federated network of healthcare 
datasets across Europe conforming to the OMOP com-
mon data model [58]. The EMA has formed a partnership, 
including EHDEN consortium members, to use OMOP to 
conduct multicentre cohort studies on the use of medicines 
in patients with COVID-19 [16]. The OHDSI network and 

tools are built in alignment with ‘findability, accessibility, 
interoperability, and reusability’ (FAIR) principles, designed 
to support good scientific data management and stewardship 
[59].

4  What is the Role for the OMOP Common 
Data Model in HTA?

We discuss the role of the OMOP common data model and 
its associated data networks in overcoming the challenges 
identified in the OPTIMAL framework and for evidence 
generation in HTA.

4.1  Operational Constraints

A large and diverse data network facilitates the identifica-
tion of relevant data sources and allows for an understand-
ing of their quality [60]. To support the timely generation 
of high-quality and relevant evidence, a well-maintained, 
high-quality register with detailed and substantial meta-data 
about each dataset is essential [41].

A key benefit of a federated data network is that it obvi-
ates the need for patient-level data to be shared across organ-
isations, which may not be possible because of data govern-
ance constraints, cost, or limited infrastructural or technical 
capacity. This should work to increase the data available for 
analysis, ensure that the most appropriate dataset(s) are used, 
enable multidatabase studies and the translation of evidence 
across jurisdictions to meet the needs of local decision mak-
ers, and increase the efficiency and timeliness of evidence 
generation.

The open-science nature of the OHDSI community means 
there is an emphasis on transparency in all aspects of study 
conduct. A comprehensive and computer-readable record 
of the ETL process used to map source data to the OMOP 
common data model and of data preparation and analysis 
for all applications is available. Tools are available to help 
understand data quality and check the validity of methodo-
logical choices (e.g. covariate balance after propensity score 
matching). The use of standardised analytics reduces the risk 
of coding errors and imposes community-agreed standards 
of methodological best practice and reporting. Transparency 
in study conduct and reporting increases the confidence in 
the results by HTA bodies and independent reviewers [61]. 
However, this alone is not sufficient to ensure transparency: 
it should be combined with other approaches, including 
pre-registration of study protocols and the use of standard 
reporting tools [44].

https://atlas.ohdsi.org/
https://www.ehden.eu
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4.2  Technical Constraints

Perhaps the main benefit of common data models is in over-
coming problems caused by limited data interoperability due 
to the diversity in data structures, formats, and terminolo-
gies. The common data model allows analysts to develop 
code on a single mapped dataset, or even synthetic dataset, 
and then execute that code on other data. The involvement 
of the data custodian in the study design and execution is 
still necessary, but the standardisation reduces the extent to 
which analysts need to be familiar with the idiosyncrasies 
of many different datasets. It enables a community to col-
laboratively develop and validate analytical pipelines.

The usefulness of any mapped dataset largely depends 
on the quality and contents of the source data from which it 
was derived. The mapping process itself cannot overcome 
problems due to missing data items or observations, data 
fragmentation, misclassification of exposures or outcomes, 
or selection bias. The OHDSI collaborative does, however, 
have tools that help characterise such problems, which can 
guide decisions about database selection and support critical 
appraisal of evidence.

There is also potential for information loss during the 
process of mapping from the source data to the common data 
model and standardised vocabularies [62]. Several validation 
studies have been published describing both successes and 
challenges in mapping data to OMOP [18, 53–55, 62–65]. 
For common data elements such as drugs and conditions, 
mapping can usually be performed with high fidelity. Most 
challenges were related to the absence of mapping tables for 
local vocabularies or of relevant standard concepts, which 
are more common for other types of healthcare and health 
system data [53–55]. This can lead to a loss of informa-
tion in some instances [62, 65]. The extent and implications 
of any information loss will depend on numerous factors, 
including the quality of the source data, the source vocabu-
lary, and the clinical application of interest. It is important 
to understand the likely impact of any information loss in 
each analysis. However, source data concepts are retained 
within the common data model and can be used in analyses 
as required. Where needed, vocabularies can be extended 
by the OHDSI community. Of course, a preferred long-term 
solution is for high-quality data to be collected at source 
using global standards.

4.3  Methodological Constraints

The role of the common data model in supporting multi-
database studies across a large data network has numerous 
benefits. It supports the translation of evidence across popu-
lations, time, and setting to support the needs of local HTA 
decision making, improving the efficiency and relevance of 
evidence generation for market access across Europe [66]. 

The opportunity it affords to enhance statistical power is 
likely to be particularly valuable in rare diseases where data 
may otherwise be insufficient to understand patient charac-
teristics, health outcomes, treatment pathways, or compara-
tive effectiveness [67]. It may also enable the extension of 
immature evidence on clinical outcomes from RCTs, allow 
exploration of heterogeneity, and support validation. The 
ability to produce reliable evidence at speed across a data 
network has been demonstrated in several applications, 
including in understanding the safety profile of hydroxy-
chloroquine in the early stages of the COVID-19 pandemic 
[8, 11, 14, 15].

However, the risks of bias due to poor-quality data, selec-
tion bias, and residual confounding cannot be eradicated by 
the common data model, although best practice tools for 
causal estimation are available. It can help characterise some 
of these problems, and the ability to replicate results in dif-
ferent datasets may increase confidence in using the results 
in decision making [30, 68].

The mapping of source data to the OMOP common data 
model is performed independently of any analysis. While 
this allows faster development of analytical code, an under-
standing of the source data, and its strengths and limita-
tions, overall and in relation to specific applications, remains 
vital. Others have argued that this separation adds a layer of 
complexity and may impede transparency in the absence of 
detailed reporting [4].

4.4  Types of Evidence and Analytical Challenges

The OMOP common data model and the standardised ana-
lytical tools have been largely built with regulatory uses in 
mind, particularly drug utilisation and comparative safety 
studies. The models for population-level estimation are 
currently limited to logistic, Poisson, and Cox proportional 
hazards modelling and propensity score matching and strati-
fication. This covers only a limited range of potential appli-
cations in HTA. For example, in HTA, continuous outcome 
(e.g. generalised linear models for healthcare utilisation, 
costs, or quality of life) and parametric survival models (e.g. 
for extrapolation of survival) are widely used. Furthermore, 
the focus of tool development has been on big data analytics 
rather than smaller curated datasets. Analysts can of course 
always develop bespoke code to run against the common 
data model and utilise existing R packages for analyses.

The OMOP common data model includes two standard-
ised health economic tables (see Sect. 3). The structure and 
contents reflect US claims data and are most useful in this 
setting. In the European setting, many healthcare datasets 
will not contain information on costs directly, but rather 
costs must be constructed from measures of healthcare uti-
lisation. Unit costs can be attached to measures of utilisa-
tion extracted from the common data model, or, where costs 
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depend on multiple parameters, this can be done prior to 
mapping with appropriate involvement of health economic 
experts. Some vocabularies will need to be extended to sup-
port HTA applications, for instance, visit concepts should 
reflect the differences in the delivery of healthcare in dif-
ferent settings, and mapping must appropriately reflect the 
uses of these data in the HTA context. Work is ongoing to 
further develop the common data model and vocabularies to 
better represent oncology treatments and outcomes, genetic 
and biomarker data, and patient-reported outcomes, all of 
which are important to HTA.

Numerous studies have shown the value of the OMOP 
common data model in undertaking drug utilisation and 
characterisation studies [13] and in estimating comparative 
safety and even effectiveness [11, 14, 15], all of which are 
important components of HTA. We undertook an additional 
case study to further understand some of the additional chal-
lenges in the context of HTA. Our objective was to estimate 
annual measures of primary care visits among patients with 
chronic obstructive pulmonary disease by disease severity 
(defined with spirometry measurements) using data in the 
UK (Clinical Practice Research Datalink) and the Nether-
lands (Integrated Primary Care Information) using a single 
script. While this analysis is possible using the common data 
model framework, we faced several challenges in its imple-
mentation. These included inappropriate mapping of source 
visit concepts to standard concepts, differences in mapping 
of measurements and observations in the two databases, and 
the absence of standard analytical tools directly applicable 
to this use case. All these challenges can be overcome by 
improved ETL processes and tool development. See Box A 
for a fuller description.

5  Conclusion

The OMOP common data model and its federated data net-
works have the potential to improve the efficiency, relevance, 
robustness, and timeliness of evidence generation for HTA. 
It supports the identification and access of data, the conduct 
of multidatabase studies, and the translation of evidence 
across populations and settings according to local HTA 
needs. The use of open-source standardised analytics and 
the possibility for greater model validation and replication 
should improve confidence in the results and their accept-
ability for decision making.

To realise this potential, it is essential that the future 
development of the common data model, vocabularies, and 
tools support the needs of HTA. We therefore call for the 
HTA community to engage with OHDSI and EHDEN to 
undertake use cases to identify development needs, drive 
priorities, and collaborate to build new tools, for exam-
ple to support extrapolation and modelling of healthcare 

utilisation, costs, and quality of life. Finally, we urge those 
mapping source data to the common data model to collabo-
rate with HTA experts to ensure that the mapping, particu-
larly of healthcare utilisation and cost data, reflects the needs 
of the HTA community.
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Box A Modelling Healthcare Utilisation 
across Countries Using OMOP: A Case 
Study

Objectives and Methods

We undertook a case study to explore the challenges of 
generating evidence for health technology assessment 
(HTA) from the Observational and Medical Outcomes 
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Partnerships (OMOP) common data model across geo-
graphical settings and to identify recommendations to 
better support such work in the future.

Our aim was to estimate annual rates of primary care 
visits by staff role (general practitioner [GP], practice 
nurse) and location (clinic, home, telephone) among 
individuals with chronic obstructive pulmonary disease 
(COPD) by disease severity (using Global Initiative for 
COPD [GOLD] stage based on percent predicmted forced 
expiratory volume in 1 second [FEV1%] measurements) 
in the UK and the Netherlands using a single reproducible 
script. We used versions of the Clinical Practice Research 
Datalink (CPRD  GOLD1) in the UK and the Integrated 
Primary Care Information  (ICPI2) database in the Neth-
erlands, which have been mapped to the OMOP common 
data model.

Challenges

The key challenges faced related to the process by which 
databases were mapped to the OMOP common data 
model (i.e. the extract, transform, and load [ETL] pro-
cess), the standard vocabularies for representing health-
care visits, and the analytical tools available.

The two databases differed in the extent of data pre-
processing before they were mapped, with IPCI data 
restricted to visits with GPs (in primary care) and CPRD 
including all patient contacts (including non-clinical 
functions). In CPRD, all contacts were mapped to a single 
standard OMOP visit concept, namely ‘outpatient visit’. 
In IPCI, primary care contacts were mapped to this same 
concept or ‘home visit’. For IPCI, no further distinguish-
ing information was given on the provider or the location 
of care. In CPRD, the location of care was defined errone-
ously as ‘public health clinic’, whereas staff role concepts 
from CPRD were mapped to 25 standard concepts across 
four distinct vocabularies, with GP contacts combined 
with non-clinical functions in the ‘unknown physician 
speciality’ concept in the provider table.

It was simple to identify patients with COPD in both 
databases, and within IPCI to categorise people according 
to disease severity based on reported FEV1%, which were 
mapped to Logical Observation Identifiers Names and 
Codes (LOINC) codes. In CPRD source data, measure-
ments are recorded using Read codes version 2 and entity 
codes. Only entity codes were mapped to the OMOP 
common data model (namely to Standard Nomenclature 
of Medicine [SNOMED] codes) in the implementation 
used in this analysis, and it was not possible to extract 
data on FEV1%, prohibiting estimation of the main 
analysis.

Finally, the analytical tools in Observational Health 
Data Sciences and Informatics (OHDSI) do not cur-
rently easily support estimation of count or continuous 
outcomes measures (such as costs), or the use of panel 
data models, and instead data were collated in R with 
standard packages used for estimation.

Recommendations

We faced several challenges in implementing a repro-
ducible script to estimate healthcare utilisation in two 
separate databases. None of these were inherent to the 
common data model approach but rather reflected the 
mapping processes adopted, the standard vocabularies, 
and the available tools in OHDSI. We offer recommen-
dations to better support these and other HTA use cases 
in the future.

First, it is essential that the uses of data for HTA are 
reflected in the data processing and mapping processes 
and that HTA experts are involved in the ETL develop-
ment and validation. Second, visits must be mapped in 
a way that reflects the specificity of healthcare delivery 
in different settings (e.g. distinguishing between primary 
care or GP visits and other outpatient [i.e. secondary care] 
visits) while allowing for cross-country comparisons. 
This will likely require some extensions to the OMOP 
vocabularies, including definition of appropriate concept 
hierarchies but also agreements on common standards 
for mapping visit data and other data types. Finally, it 
is important that further analytical tools are developed 
to support the types of analyses common in HTA. This 
includes models for continuous (or count) outcomes and 
time-to-event data.

Notes:
1We used the ETL created by Janssen and deployed by 

the University of Oxford. The ETL documentation can 
be found here: https ://ohdsi .githu b.io/ETL-Lambd aBuil 
der/docs/CPRD.

2The ETL documentation is available on request from 
Erasmus Medical Centre.
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