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The sequences of 150,119 genomes in the UK 
Biobank

Bjarni V. Halldorsson1,2 ✉, Hannes P. Eggertsson1, Kristjan H. S. Moore1, Hannes Hauswedell1, 
Ogmundur Eiriksson1, Magnus O. Ulfarsson1,3, Gunnar Palsson1, Marteinn T. Hardarson1,2, 
Asmundur Oddsson1, Brynjar O. Jensson1, Snaedis Kristmundsdottir1,2, 
Brynja D. Sigurpalsdottir1,2, Olafur A. Stefansson1, Doruk Beyter1, Guillaume Holley1, 
Vinicius Tragante1, Arnaldur Gylfason1, Pall I. Olason1, Florian Zink1, Margret Asgeirsdottir1, 
Sverrir T. Sverrisson1, Brynjar Sigurdsson1, Sigurjon A. Gudjonsson1, Gunnar T. Sigurdsson1, 
Gisli H. Halldorsson1, Gardar Sveinbjornsson1, Kristjan Norland1, Unnur Styrkarsdottir1, 
Droplaug N. Magnusdottir1, Steinunn Snorradottir1, Kari Kristinsson1, Emilia Sobech1, 
Helgi Jonsson4,5, Arni J. Geirsson4, Isleifur Olafsson4, Palmi Jonsson4,5, Ole Birger Pedersen6, 
Christian Erikstrup7,8, Søren Brunak9, Sisse Rye Ostrowski10,11, DBDS Genetic Consortium*, 
Gudmar Thorleifsson1, Frosti Jonsson1, Pall Melsted1,3, Ingileif Jonsdottir1,5, Thorunn Rafnar1, 
Hilma Holm1, Hreinn Stefansson1, Jona Saemundsdottir1, Daniel F. Gudbjartsson1,3, 
Olafur T. Magnusson1, Gisli Masson1, Unnur Thorsteinsdottir1,5, Agnar Helgason1,12, 
Hakon Jonsson1, Patrick Sulem1 & Kari Stefansson1 ✉

Detailed knowledge of how diversity in the sequence of the human genome affects 
phenotypic diversity depends on a comprehensive and reliable characterization of 
both sequences and phenotypic variation. Over the past decade, insights into this 
relationship have been obtained from whole-exome sequencing or whole-genome 
sequencing of large cohorts with rich phenotypic data1,2. Here we describe the analysis 
of whole-genome sequencing of 150,119 individuals from the UK Biobank3. This 
constitutes a set of high-quality variants, including 585,040,410 single-nucleotide 
polymorphisms, representing 7.0% of all possible human single-nucleotide 
polymorphisms, and 58,707,036 indels. This large set of variants allows us to 
characterize selection based on sequence variation within a population through a 
depletion rank score of windows along the genome. Depletion rank analysis shows 
that coding exons represent a small fraction of regions in the genome subject to 
strong sequence conservation. We define three cohorts within the UK Biobank: a large 
British Irish cohort, a smaller African cohort and a South Asian cohort. A haplotype 
reference panel is provided that allows reliable imputation of most variants carried by 
three or more sequenced individuals. We identified 895,055 structural variants and 
2,536,688 microsatellites, groups of variants typically excluded from large-scale 
whole-genome sequencing studies. Using this formidable new resource, we provide 
several examples of trait associations for rare variants with large effects not found 
previously through studies based on whole-exome sequencing and/or imputation.

The UK Biobank (UKB)3 documents phenotypic variation of 500,000 
participants across the UK, with a healthy volunteer bias4. The UKB 
whole-genome sequencing (WGS) consortium is sequencing the whole 
genomes of all the participants to an average depth of at least 23.5×. Here 
we report on the first data release consisting of a vast set of sequence 
variants, including single-nucleotide polymorphisms (SNPs), short inser-
tions or deletions (indels), microsatellites and structural variants (SVs), 

based on WGS of 150,119 individuals. All variant calls were performed 
jointly across individuals, allowing for consistent comparison of results. 
The resulting dataset provides an unparalleled opportunity to study 
sequence diversity in humans and its effect on phenotype variation.

Previous studies of the UKB have produced genome-wide SNP 
array data5 and whole-exome sequencing (WES) data6,7. Although SNP 
arrays typically only capture a small fraction of common variants in 
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the genome, when combined with a reference panel of WGS individu-
als8, a much larger set of variants in these individuals can be surveyed 
through imputation. Imputation, however, misses variants private to 
the individuals only typed on SNP arrays and provides unreliable results 
for variants with insufficient haplotype sharing between carriers in the 
reference and imputation sets. Poorly imputed variants are typically 
rare, highly mutable or in genomic regions with complicated haplotype 
structure, often due to structural variation.

WES is mainly limited to regions known to be translated and conse-
quently reveals only a small proportion (2–3%) of sequence variation in 
the human genome. It is relatively straightforward to assign function to 
variants inside protein-coding regions, but there is abundant evidence 
that variants outside coding exons are also functionally important9, 
explaining a large fraction of the heritability of traits10.

Large-scale sequencing efforts have typically focused on identifying 
SNPs and short indels. Although these are the most abundant types of 
variants in the human genome, other types, including SVs and micros-
atellites, affect a greater number of base pairs each and consequently 
are more likely to have a functional impact11,12. Even the SVs that overlap 
exons are difficult to ascertain with WES owing to the much greater 
variability in the depth of sequence coverage in WES studies than in 
WGS studies becasue of the capture step of targeted sequencing. Micro-
satellites, polymorphic tandem repeats of 1–6 bp, are also commonly 
not examined in large-scale sequence analysis studies.

Here we highlight some of the insights gained from this vast new 
resource of WGS data that would be challenging or impossible to ascer-
tain from WES and SNP array datasets.

SNPs and indels
The whole genomes of 150,119 UKB participants were sequenced to an 
average coverage of 32.5× (at least 23.5× per individual; Supplemen-
tary Fig. 1) using Illumina NovaSeq sequencing machines at deCODE 
Genetics (90,667 individuals) and the Wellcome Trust Sanger Institute 
(59,452 individuals). Individuals were pseudorandomly selected from 
the set of UKB participants and divided between the two sequencing 
centres. All 150,119 individuals were used in variant discovery, 13 indi-
viduals were sequenced in duplicate, 11 individuals withdrew consent 
from time of sequencing to time of analysis and microarray data were 
not available to us for 135 individuals, leaving 149,960 individuals for 
subsequent analysis.

Sequence reads were mapped to human reference genome GRCh3813 
using BWA14. SNPs and short indels were jointly called over all individu-
als using both GraphTyper15 and GATK HaplotypeCaller16, resulting in 
655,928,639 and 710,913,648 variants, respectively. We used several 
approaches to compare the accuracy of the two variant callers, includ-
ing comparison to curated datasets17 (Supplementary Table 1 and Sup-
plementary Fig. 2), transmission of alleles in trios (Supplementary 
Tables 2 and 3), comparison of imputation accuracy (Supplementary 
Table 4) and comparison to WES data (Supplementary Table 5). These 
comparisons suggested that GraphTyper provided more accurate 
genotype calls. For example, despite 7.7% fewer GraphTyper variants, 
we estimated that GraphTyper called 4.5% more true-positive vari-
ants in trios and had 9.4% more reliably imputing variants than GATK. 
We therefore restricted subsequent analyses of short variants to the 

Table 1 | Overlap of WES and WGS data

 Annotation WGS WES Intersection of WGS 
and WES

Unique to 
WES

Present WES 
(%)

Missing WES 
(%)

Present WGS 
(%)

Missing WGS 
(%)

Coding 6,380,795 5,781,829 5,686,934 94,895 89.29 10.71 98.53 1.47

Splice 445,499 397,226 388,961 8,265 87.54 12.46 98.18 1.82

5′ UTR 2,125,413 590,484 572,996 17,488 27.56 72.44 99.18 0.82

3′ UTR 7,214,427 764,864 743,790 21,074 10.57 89.43 99.71 0.29

Proximal 249,702,570 6,189,465 5,952,145 237,320 2.48 97.52 99.91 0.09

Intergenic 292,259,782 91,836 83,360 8,476 0.03 99.97 More than 
99.99

Less than 0.01

Results are computed for the 109,618 samples present in both datasets and are limited to those variants that are present in at least one individual in either dataset. Numbers refer to the number 
of variants found in the dataset. WGS refers to the GraphTyperHQ dataset and WES refers to a set of 200,000 WES-sequenced indivdiduals59. Missing and present percentages are computed 
from the number of variants in the union of the two datasets.
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GraphTyper genotypes, although further insights might be gained 
from exploring these call sets jointly. To contain the number of false 
positives, GraphTyper uses a logistic regression model that assigns 
each variant a score (AAscore), predicting the probability that it is a 
true positive. We focused on the 643,747,446 (98.14%) high-quality 
GraphTyper variants, indicated by an AAscore above 0.5, hereafter 
referred to as GraphTyperHQ.

The American College of Medical Genetics and Genomics (ACMG) rec-
ommends reporting actionable genotypes in a list of genes associated 
with diseases that are highly penetrant and for which a well-established 
intervention is available18. We found that 4.1% of the 149,960 individuals 
carry an actionable genotype in one of 73 genes according to ACMG18 
v3.0. Using WES6 and ACMG v2.0 (59 genes), 2.0% were reported to 

carry an actionable genotype, when restricting our analysis to ACMG 
v2.0 and the same criteria, we found 2.5% based on WGS, increasing 
the number of actionable genotypes detected in a large cohort, to the 
extent that it could have a notable effect on societal disease burden.

The number of variants identified per individual is 40 times larger 
than the number of variants identified through the WES studies of 
the same UKB individuals (Table 1; Methods). Although referred to 
as ‘WES’, we found that WES primarily captures coding exons and 
misses most variants in exons that are transcribed but not translated, 
missing 72.2% and 89.4%, of the 5′ and 3′ untranslated region (UTR) 
variants, respectively. Even inside of coding exons currently curated 
by ENCODE19, we estimate that 10.7% of variants are missed by WES 
(Table 1). Manual inspection of the missing variants in WES suggests 
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that these are missing due to both missing coverage in some regions 
and genotyping filters. Conversely, almost all variants identified with 
WES are found by WGS (Table 1).

Functionally important regions
The number of SNPs discovered in our study corresponds to an average 
of one every 4.8 bp, in the regions of the genome that are mappable 
with short sequence reads. This amounts to detection of 7.0% of all 
theoretically possible SNPs in these regions (a measure of saturation). 
We observed 81.5% of all possible autosomal CpG>TpG variants, 11.8% 
of other transitions and only 4.0% of transversions (Supplementary 
Table 6). Restricting the analysis to 17,345,777 autosomal CpG dinucleo-
tides methylated in the germ line9, we observed transition variants at 

89.1% of all methylated CpGs. As CpG mutations are so heavily saturated 
(Fig. 1), the ratio of transitions to transversions (1.66) is lower than found 
in smaller WGS sets1 and de novo mutation studies20.

The vast majority of all variants identified are rare (Supplementary 
Table 7), 46.0% and 40.6% of all SNPs and short indels, respectively, 
are singletons (carried by a single sequenced individual), and 96.6% 
and 91.7% have a frequency below 0.1%. Inference of haplotypes and 
imputation typically involves identifying variants that are shared due 
to a common ancestor (are identical by descent). Owing to the scale 
of the UKB WGS data, an observation of the same allele in unrelated 
individuals does not always imply identity by descent. A clear indication 
of this is that only 14% of the highly saturated CpG>TpG variants are 
singletons, in contrast to 47% for other SNPs (Fig. 1b). These recurrence 
phenomena have been described in other sample sets using sharing of 
rare variants between different subsets2,21. We used a de novo mutation 
set from 2,976 trios in Iceland20 to assess recurrence directly, as variants 
present in both that set and the UKB must be derived from at least two 
mutational events. Out of the 194,687 Icelandic de novo mutations, we 
found 53,859 (27.7%) in the UKB set, providing a direct observation 
of sequence variants derived from at least two mutational events. As 
expected, we found that CpG>TpG mutations are the most enriched 
mutation class in the overlap, owing to their high mutation rate22 and 
saturation in the UKB set (Fig. 1b).

The rate and pattern of variants in the genome is informative about 
the mutation and selection processes that have shaped the genome23. 
The number of sequence variants in the exome has been used to rank 
genes according to their tolerance of loss of function (LoF) and missense 

Table 2 | Overrepresentation and underrepresentation of 
GWAS variants in low and high DR regions

DR of non-coding 
regions (%)

Enrichment 95% CI P value

1 3.22 2.44–4.07 <0.0004

99 0.45 0.23–0.70 <0.0004

5 2.25 1.86–2.69 <0.0004

95 0.61 0.47–0.70 <0.0004

Windows overlapping coding exons were removed. Lower DR scores indicate greater 
sequence conservation.
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variation21,24. The focus on the exome is because of the availability of 
WES datasets and the relatively straightforward functional interpreta-
tion of coding variants. Conservation across a broad range of species25 is 
used to infer the impact of selection beyond the exome, leveraging the 
extensive accumulation of mutations over millions of years. However, 
such statistics are only partially informative about sequence conserva-
tion specific to humans26. Sequence variation in humans27,28 can be used 
to characterize human-specific conservation, but large sample sizes 
are required for accurate inference, as much fewer mutations separate 
pairs of humans than different species.

The extensive saturation of CpG>TpG variants at methylated CpGs in 
large WES cohorts has been used to identify genomic annotation or loci 
where their absence could be indicative of negative selection21,29. In line 
with previous reports21, we saw less saturation of stop-gain CpG>TpG 
variants than those that are synonymous (Fig. 1c). Synonymous muta-
tions are often assumed to be unaffected by selection (neutral)29; how-
ever, we found that synonymous CpG>TpG mutations are less saturated 
(85.7%) than those that are intergenic (89.9%), supporting the hypoth-
esis that human codon usage is constrained30.

Extending this approach, we used sequence variant counts in the 
UKB to seek conserved regions in 500-bp windows across the human 
genome. We build on the methodology behind the context-dependent 
tolerance score (CDTS)27, applying it to a larger dataset. More spe-
cifically, we tabulated the number of variants in each window and 
compared this number to an expected number given the heptamer 

nucleotide composition of the window and the fraction of heptamers 
with a sequence variant across the genome and their mutational classes. 
We then assigned a rank (depletion rank (DR)) from 0 (most deple-
tion) to 100 (least depletion) for each 500-bp window. As expected, 
coding exons have a low DR (mean DR = 28.4), but a large number of 
non-coding regions show even lower DR (more depletion), including 
non-coding regulatory elements. Among the 1% of regions with the 
lowest DR, 13.0% are coding and 87.0% are non-coding, with an over-
representation of splice, UTR, gene upstream and downstream regions 
(Fig. 2a). DR increases with distance from coding exons (Fig. 2b). After 
removing coding exons, among the 1% of regions with lowest and high-
est DR score, we saw a 3.2-fold and 0.4-fold overrepresentation of GWAS 
variants, respectively (Table 2), suggesting that the DR score could be a 
useful prior in GWAS analysis31. ENCODE9 candidate cis-regulatory ele-
ments are more likely than expected by chance to be found in depleted 
(low DR) regions (Table 3). Of note, candidate cis-regulatory elements 
located in close proximity to transcription start sites, that is, proximal 
enhancer-like and promoter-like sequences, are more enriched among 
depleted regions than distal enhancer-like sequences.

Regions under strong negative selection are expected to have a 
greater fraction of rare variants (FRV; defined here as variants carried 
by at most four WGS individuals) than the rest of the genome28. We 
observed a greater FRV in the most depleted regions (DR < 5) than in 
the least depleted regions (DR > 95): 74.8% versus 69.1% (Fig. 2c and Sup-
plementary Fig. 3). This was also seen when limiting to only non-coding 
regions (74.6% versus 69.2%). Using the FRV of annotated coding vari-
ants as a reference (Fig. 2c), we found that the most depleted regions 
(DR < 1) had a FRV comparable to missense mutations (75.5%).

Overall, there is a weak correlation between DR and interspecies con-
servation as measured by genomic evolutionary rate profiling (GERP)25 
(linear regression r2 = 0.0050, two-sided P < 2.2 × 10−308; Fig. 2d). We 
found a stronger correlation between DR and GERP within coding exons 
(linear regression r2 = 0.0498, two-sided P < 2.2 × 10−308) than outside 
them (linear regression r2 = 0.0012, two-sided P < 2.2 × 10−308), indicat-
ing that the correlation between DR and GERP is mostly due to the most 
highly conserved elements, such as coding exons, in the 36 mammalian 
species used to calculate GERP, with much weaker correlation in less 
conserved regions.

To determine whether DR reflects human-specific negative selection 
that is not captured by GERP, we aggregated DR across the exons and 
compared it to the LOEUF metric from Gnomad21 (Fig. 2e). LOEUF meas-
ures the intolerance to LoF mutations of genes, but it does not measure 
intolerance outside coding exons. We found that DR is correlated with 
LOEUF (linear regression r2 = 0.085, two-sided P < 2.2 × 10−16). LOEUF 
correlates with genes demonstrating autosomal dominant inherit-
ance21; in line with this, we found that DR is correlated (linear regres-
sion r2 = 0.0027, two-sided P = 6.6 × 10−12) with autosomal dominant 
genes as reported by OMIM32 (Supplementary Table 8). Modelling the 
LOEUF metric as a function of GERP and extracting the residuals from 
a linear fit, we obtained a measure of human-specific LoF intolerance 
(LOEUF|GERP). We found that DR is correlated with LOEUF|GERP (linear 
regression r2 = 0.024, two-sided P < 2.2 × 10−16; Fig. 2f), indicating that 
DR measures human-specific sequence constraint not captured by 
GERP. We compared DR with CDTS27, which is a measure of sequence 
constraint analogous to the one presented here, and CADD33, Eigen34 
and LINSIGHT35, which are measures of functional impact that incorpo-
rate interspecies conservation (Extended Data Fig. 1). The constraint 
metrics that use interspecies conservation form one correlation block 
(GERP, CADD, Eigen and LINSIGHT) that is less correlated with the DR 
and CDTS correlation block (Supplementary Table 9). The regions 
with the lowest DR score show similar enrichment across all metrics 
(Extended Data Fig. 1). Overall, our results show that DR can be used 
to help identify genomic regions under constraint across the entire 
genome and as such provides a valuable resource for identifying 
non-coding sequence of functional importance.
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Fig. 4 | Variant call set. a, Number of SNPs, indels, microsatellites, SV 
insertions, SV deletions and singleton SNPs carried per diploid genome of 
individuals in the overall set and partitioned by population. b, Imputation 
accuracy in the three populations: XBI (left), XAF (middle) and XSA (right). A 
variant was considered imputed if ‘leave one out r2’ of phasing was greater than 
0.5 and imputation information was greater than 0.8. The x axis splits variants 
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Variants are split by variant type. c, Number of SVs discovered in the dataset by 
variant type. d, Length distribution of SVs, from 50 to 1,000 bp, 1,000 to 
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Multiple cohorts within UKB
Many GWAS36 using the UKB data have been based on a subset5 of 409,559 
participants who self-identified as ‘white British’. To better leverage the 
value of a wider range of of UKB participants, we defined three cohorts 
encompassing 450,690 individuals (Supplementary Table 10), based on 
genetic clustering of microarray genotypes informed by self-described 
ethnicity and supervised ancestry inference (Methods). The largest 
cohort, XBI (Extended Data Fig. 3), contains 431,805 individuals, includ-
ing 99.6% of the 409,559 prescribed white British set, along with around 
23,900 additional individuals previously excluded because they did 
not identify as white British (thereof 13,000 who identified as ‘white 
Irish’). We believe that this expanded set will increase power in associa-
tion studies, but have not examined in detail whether this set has other 
potential benefits or disadvantages. Principal components analysis of 
the 132,000 XBI individuals with WGS data (Methods), based on 4.6 
million loci, reveals an extraordinarily fine-scaled differentiation by 
geography in the British Irish Isles gene pool (Extended Data Fig. 2).

We defined two other cohorts based on ancestry: African (XAF; 
n = 9,633; Extended Data Fig. 4) and South Asian (XSA; n = 9,252; 
Extended Data Fig. 5) (Fig. 3a–c). The 37,598 UKB individuals who do 
not belong to XBI, XAF or XSA were assigned to the cohort OTH (others). 
The WGS data of the XAF cohort represent one of the most compre-
hensive surveys of African sequence variation to date, with reported 
birthplaces of its members covering 31 of the 44 countries on mainland 
of sub-Saharan Africa (Extended Data Fig. 4). Owing to the considerable 
genetic diversity of African populations, and resultant differences in 
patterns of linkage disequilibrium, the XAF cohort may prove valuable 
for fine-mapping association signals due to multiple strongly correlated 
variants identified in XBI or other non-African populations.

We crossed GraphTyperHQ variants with exon annotations and found 
that, on average, around 1 in 30 individuals is homozygous for rare (minor 
allele frequency of less than 1%) LoF mutations in the homozygous state 
and the median number of heterozygous rare LoF is 24 per individual. 
We detected rare LoF variants in 19,105 genes, in which 2,017 genes had 
homozygous carriers of rare LoFs (individuals n = 5,102). A marked differ-
ence in the number of homozygous LoFs carriers was found between the 
cohorts, with XSA having the largest fraction of homozygous LoF carriers 
(Extended Data Fig. 6b). A notable feature of the XSA cohort is elevated 
genomic inbreeding, probably owing to endogamy37, particularly among 
self-identified Pakistani individuals38 (Extended Data Fig. 6a).

On average, individuals carried alternative alleles of 3,410,510 SNPs 
and indels (Fig. 4a), per haploid genome. A greater number of variants 
are generally found in individuals born outside Europe (Extended Data 
Fig. 7), because the human reference genome is primarily derived from 
individuals of European ancestry13. XAF individuals carry the greatest 
number of alternative alleles (Fig. 4a). We constructed cohort-specific 
DRs and found that XAF shows greater depletion around exons than 
XBI and XSA (Extended Data Fig. 8). Largely owing to variation in the 
number of individuals sampled, the average number of singletons per 
individual varies considerably by ancestry (Fig. 4a). Thus, individuals 
from the XBI, XAF and XSA cohorts have an average of 1,330, 9,623 
and 8,340 singleton variants, respectively. In XBI, singleton counts 
(Fig. 3d) indicate that the expected number of new variants discovered 
per genome is still substantial, but varies geographically, averaging 
around 1,000 in northern England and 2,000 in southeastern England. 
This pattern is largely explained by denser sampling of some regions 
(Fig. 3e,f) rather than regional ancestry differences.

Imputation
We were able to reliably impute variants into the entire UKB sample set 
down to very low frequency (Fig. 4b). We imputed phased genotypes, 
which permit analysis that depend on phase such as identification of 
compound LoF heterozygotes. A single reference panel was used to 
impute into the genomes of all participants in UKB, but results are pre-
sented separately for the three cohorts (Supplementary Table 11). This 
reference panel can be used for accurate imputation in individuals from 
the UK and many other populations. In the XBI cohort, 98.5% of variants 
with a frequency above 0.1% and 65.8% of variants in the frequency 
category of 0.001–0.002% (representing 3–5 WGS carriers) could be 
reliably imputed (Fig. 4b and Supplementary Fig. 13). Variants were also 
imputed with high accuracy in XAF and XSA cohorts (Fig. 4b), in which 
97.5% and 94.9% of variants in frequencies 1–5% and 56.6% and 48.9% 
of variants carried by 3–5 sequenced individuals could be imputed, 
respectively. A larger number of variants, particularly rare ones, are 
imputed for all cohorts than when using a alternate imputation panel5 
(Supplementary Table 12). It is thus likely that the UKB reference panel 
provides one of the best-available option for imputing genotypes into 
population samples from Africa and South Asia.

We found a number of clinically important variants that can now  
be imputed from the dataset. These include rs63750205 (NM_000518.5 
(HBB):c.*110_*111del) in the 3′ UTR of HBB, a variant that has been 
annotated in ClinVar39 as likely pathogenic for β-thalassaemia. 
rs63750205-TTA has 0.005% frequency in the imputed XBI cohort 
(imputation information of 0.98) and is associated with lower mean cor-
puscular volume by 2.88 s.d. (95% CI 2.43–3.33, two-sided P = 1.5 × 10−36, χ2).

In the XSA cohort, we found rs563555492-G, a previously reported40 
missense variant in PIEZO1 (frequency = 3.65% for XSA, 0.046% for XAF 
and 0.0022% for XBI) associated with higher haemoglobin concentra-
tion, effect 0.36 s.d. (95% CI 0.28–0.44, two-sided P = 8.9 × 10−19, χ2). 
The variant can be imputed into the XSA population with imputation 
information of 0.99.

In the XAF cohort, we found the stop-gain variant rs28362286-C 
(p.Cys679Ter) in PCSK9 (frequency = 0.93% in XAF, 0.00016% in XBI and 
0.0070% in XSA) imputed in the XAF cohort with imputation informa-
tion of 0.93. The variant lowers non-HDL cholesterol by 0.92 s.d. (95% CI 
0.75–1.09, two-sided P = 2.3 × 10−26, χ2). We found a single homozygous 
carrier of this variant, who has a 2.5 s.d. lower non-HDL cholesterol 
than the population mean, is 61 years of age and appears to be healthy.

SNP and indel associations not in WES
We tested imputed GraphTyper SNP/indel, microsatellite and SV data-
sets for association with a total of 8,180, 1,291 and 459 phenotypes in 
the XBI, XAF and XSA cohorts, respectively. We highlight examples of 

Table 3 | Enrichment of cCREs from ENCODE among low DR 
regions defined at the 1% and 5% percentiles

cCREsa Genome 
(%)

Enrichment (OR (95% CI))

DR 1% 
percentile

DR 5% 
percentile

pELS, CTCF-bound 0.53 6.35 (6.04–6.68) 3.49 (3.37–3.61)

PLS, CTCF-bound 0.15 6.37 (6–6.75) 3.34 (3.19–3.49)

PLS 0.05 2.77 (2.53–3.03) 1.9 (1.79–2.03)

pELS 0.53 2.49 (2.39–2.63) 1.96 (1.9–2.02)

DNase H3K4me3, 
CTCF-bound

0.07 1.92 (1.67–2.19) 1.48 (1.38–1.59)

dELS, CTCF-bound 1.86 1.65 (1.58–1.71) 1.53 (1.5–1.57)

dELS 4.11 1.17 (1.13–1.2) 1.27 (1.25–1.3)

DNase H3K4me3 0.15 1.15 (1.04–1.27) 1.03 (0.974–1.08)

CTCF only 0.47 0.878 (0.83–
0.925)

0.96 (0.933–
0.987)

The percentage of the genome covered by candidate cis-regulatory elements (cCREs) are 
indicated for each type of cCRE. 
CTCF, CCCTC-binding factor; dELS, distal enhancer-like sequence; OR, odds ratio; pELS, 
proximal enhancer-like sequence; PLS, promoter-like sequence. 
aExons of protein-coding genes found in overlap with cCRE regions were removed.
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associations with traits that could not be easily identified in WES or SNP 
array data, starting with three examples of SNP and indel associations 
in the XBI cohort.

The first is an association in the XBI cohort between a rare variant— 
rs117919628-A (frequency = 0.32%; imputation information of 
0.90), in the promoter region of GHRH, which encodes growth 
hormone-releasing hormone, close to one of its transcription start 
sites—and less height (effect = −0.32 s.d. (95% CI 0.27–0.36), two-sided 
P = 1.6 × 10−39, χ2). GHRH is a neuropeptide secreted by the hypothala-
mus to stimulate the synthesis of growth hormone (GH). We note that 
the effect (−0.32 s.d. or −3 cm) of rs117919628 is greater than any vari-
ant reported in large height genome-wide association studies (GWAS; 
approximately 1,200 associated variants)41–43. In addition to reducing 
height, rs117919628-A is associated with lower serum levels of insulin 
growth factor 1 (IGF1; effect = −0.36 s.d. (95% CI 0.32–0.40), two-sided 
P = 3.2 × 10−58, χ2). The production of IGF1 is stimulated by GH and medi-
ates the effect of GH on childhood growth, further supporting the 
hypothesis that GHRH mediates the effects of rs117919628-A. Owing 
to its location around 50 bp upstream of the GHRH 5′ UTR, this vari-
ant is not targeted by the UKB WES, and neither is the only strongly 
correlated variant rs372043631 (intronic). rs117919628-A is not cor-
related with rs763014119-C (no individuals carry the minor allele of 
both variants), a previously reported44 very rare frameshift deletion in 
GHRH (Phe7Leufster2; frequency = 0.0092%), associated with reduced 
height and IGF1 levels (height effect = −0.63 s.d (95% CI 0.36–0.89), 
two-sided P = 4.6 × 10−6; IGF1 effect = −0.74 s.d. (95% CI 0.49–0.99), 
two-sided P = 4.9 × 10−9, χ2).

The second example is rs939016030-A, a rare 3′ UTR essential 
splice acceptor variant in the gene encoding tachykinin 3 (TAC3; fre-
quency = 0.033%; c.*2-1G>T in NM_001178054.1 and NM_013251.3). 
This variant is not found in WES of the UKB45 and neither are the two 
highly correlated variants: one intronic (rs34711498) and one intergenic 
(rs368268673). The minor allele of this 3′ UTR essential splice variant, 
rs939016030-A, is associated with later age of menarche, with an effect 
of 0.57 s.d. (95% CI 0.41–0.74) or 11 months (two-sided P = 1.0 × 10−11, χ2). 
Rare coding variants in TAC3 and its receptor TACR3 have been reported 
to cause hypogonadotropic hypogonadism46 under autosomal reces-
sive inheritance. However, in the UKB, the association of the 3′ UTR 
splice acceptor variant is only driven by heterozygotes (approximately 
1 in 1,500 individuals) with no homozygotes detected. We replicated 
this finding in a set of 39,360 Danish individuals, with an effect of 0.70 
s.d. (95% CI 0.34–1.06, frequency = 0.05%, two-sided P = 0.00014, χ2).

The third example is a rare variant (rs1383914144-A; frequency =  
0.40%) near the centromere of chromosome 1 (start of 1q) that associ-
ates with lower levels of uric acid (effect = −0.43 s.d. (95% CI 0.40–0.46) 
or −0.58 mg dl−1 (95% CI 0.54–0.62), two-sided P = 8.1 × 10−170, χ2) and 
protection against gout (OR = 0.36 (95% CI 0.28–0.46), two-sided 
P = 4.2 × 10−15, χ2). A second variant, rs1189542743, 4 Mb downstream 
at the end of chromosome 1p is strongly correlated with rs1383914144 
(r2 = 0.68) and yields a similar association with uric acid. No associa-
tion was reported in this region in the uric acid GWAS47. The effect of 
rs1383914144-A on uric acid is larger than of any variant reported in the 
latest GWAS meta-analysis of this trait. We replicated these findings in 
Icelandic individuals (rs1383914144-A, frequency = 0.47%; uric acid: 
two-sided P = 8.0 × 10−37, χ2, effect = − 0.51 s.d. (95% CI 0.43–0.59); gout: 
two-sided P = 0.0018, χ2, OR = 0.31 (95% CI 0.15–0.64)).

Structural variants
We identified SVs in each individual using Manta48 and combined these 
with variants from a long-read study49 and the assemblies of seven 
individuals50. We genotyped the resulting 895,055 SVs (Fig. 4c) with 
GraphTyper50, of which 637,321 were considered reliable.

On average, we identified 7,963 reliable SVs per individual, 4,185 dele-
tions and 3,778 insertion (Fig. 4a). These numbers are comparable to 

the 7,439 SVs per individual found by Gnomad-SV51, another short-read 
study, but considerably smaller than the 22,636 high-quality SVs found 
in a long-read sequencing study49, mostly owing to an underrepresen-
tation of insertions and SVs in repetitive regions. SVs show a similar 
frequency distribution as SNPs and indels and a similar distribution 
of variants across cohorts (Fig. 4a).

We present four examples of phenotype associations with SVs, not 
easily found in WES data. First, a rare (frequency = 0.037%) 14,154-bp 
deletion that removes the first exon in PCSK9, previously discovered 
using long-read sequencing in the Icelandic population and is associ-
ated with lower levels of non-HDL cholesterol49. There were 32 WGS 
carriers in the XBI cohort (frequency = 0.012%) and 72 carriers in 
the XBI imputed set (frequency = 0.0087%) who had 1.22 s.d. (95% CI  
0.90–1.55) lower levels of non-HDL cholesterol than non-carriers 
(two-sided P = 1.2 × 10−13, χ2).

The second example is a 4,160-bp deletion (frequency = 0.037% in 
XBI) that removes the promoter region from 4,300 to 140 bp upstream 
of the ALB gene, which encodes albumin. Not surprisingly, carriers of 
this deletion have markedly lower levels of serum albumin (effect = 1.50 
s.d. (95% CI 1.35–1.62), two-sided P = 9.5 × 10−118, χ2). The variant is also 
associated with traits correlated with albumin levels; carriers had  
lower levels of calcium and cholesterol: 0.62 s.d. (95% CI 0.50–0.75, 
two-sided P = 2.9 × 10−22, χ2) and 0.45 s.d. (95% CI 0.30–0.59, two-sided 
P = 1.1 × 10−9, χ2), respectively.

The third SV example is a 16,411-bp deletion (frequency = 0.0090% in 
XBI) that removes the last two exons (4 and 5) of GCSH, which encodes 
glycine cleavage system H protein. Carriers of this deletion have 
markedly higher levels of glycine in the UKB metabolomics dataset 
(effect = 1.45 s.d. (95% CI 1.01–1.86), two-sided P = 1.2 × 10−10, χ2).

The final example is a rare (frequency = 0.892% in XBI) 754-bp dele-
tion overlapping exon 6 of NMRK2, which encodes nicotinamide 
riboside kinase 2, that removes 72 bp from the transcribed RNA that 
corresponds to a 24 amino acid in-frame deletion in the translated 
protein. Carriers of this deletion have a 0.22 s.d. (95% CI 0.18–0.27) 
earlier age at menopause (two-sided P = 1.1 × 10−26, χ2). Nearby is the 
variant rs147068659, which has been reported to be associated with 
this trait52, with an effect of 0.20 s.d. (95% CI 0.16–0.24) earlier age at 
menopause (two-sided P = 2.0 × 10−20, χ2) in the XBI cohort. The deletion 
and rs147068659 are correlated (r2 = 0.67); after conditional analysis 
the deletion remains significant (two-sided P = 6.4 × 10−8, χ2), whereas 
rs147068659 does not (two-sided P = 0.39, χ2), indicating that the dele-
tion is the lead variant for the locus. NMRK2 is primarily expressed in 
heart and muscle tissue53. In our dataset of right atrium heart tissue, 
one individual out of a set of 169 RNA-sequenced individuals is a car-
rier of this deletion. As expected, we observed decreased expression 
of exon 6 in this individual and an increase in the fraction of transcript 
fragments skipping exon 6 (Extended Data Fig. 9).

Microsatellites are commonly overlooked
We identified 14,321,152 alleles at 2,536,688 microsatellite loci using 
popSTR54 in the 150,119 WGS individuals who carry, on average, 810,606 
non-reference microsatellite alleles. The number of non-reference 
alleles carried per individual shows a similar distribution across the 
UKB cohorts as other variant types characterized in this study (Fig. 4a). 
Microsatellites are among the most rapidly mutating variants in the 
human genome and a source of genetic variation that is usually over-
looked in GWAS. Repeat expansions are known to associate with a 
number of phenotypes, including fragile X syndrome55. We were able 
to impute microsatellites down to a very low frequency (Supplementary 
Fig. 4) in all three cohorts, providing one of the first large-scale datasets 
of imputed microsatellites.

We genotyped a microsatellite within the CACNA1A gene, which 
encodes voltage-gated calcium channel subunit-α 1A. Individuals who 
have 20 or more repeats of this microsatellite generally suffer from 
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lifelong conditions that affect the brain, including familial hemiplegic 
migraine type 1, epilepsy, episodic ataxia type 2 and spinocerebel-
lar ataxia type 6 (ref. 56). Carriers in the XBI cohort of 22 copies of the 
microsattelite repeat were at greater risk for hereditary ataxia (fre-
quency = 0.0071%, OR = 304, two-sided P = 1.1 × 10−31, χ2).

We also confirmed an association between a microsatellite within 
the 3′ UTR of DMPK, which encodes DM1 protein kinase, and myotonic 
dystrophy in the XBI cohort. Expression of DMPK has been shown to 
be negatively correlated with the number of repeats of the microsatel-
lite57. The risk of myotonic dystrophy increases with copy number of 
the repeats, rising rapidly with the number of repeats carried by an 
individual up to an OR of 161 for individuals carrying 39 or more repeats 
(Extended Data Fig. 10 and Supplementary Table 13).

Discussion
The dataset provided by sequencing the whole genomes of approxi-
mately 150,000 UKB participants is unparalleled in its size and provides 
the most extensive characterization of the sequence diversity in the 
germline genomes of a single population to date. We characterized an 
extensive set of sequence variants in the WGS individuals, providing two 
sets of SNP and indel data, as well as microsatellite and SV data, variant 
classes that are frequently not interrogated in GWAS. The number of 
SNPs and indels are 40-fold greater than from WES of the same individu-
als. Even within annotated coding exons, WES misses 10.7% of variants, 
found through WGS. WES misses most of the remainder of the genome, 
including functionally important UTRs, promoter regions and exons 
yet to be annotated. The importance of these regions is exemplified by 
the discovery of rare non-coding sequence variants with larger effects 
on height and menarche than any variants described in GWAS to date.

We expect the DR score presented here to be an important resource 
for identifying genomic regions of functional importance, although 
further evaluations should be taken to understand its properties and 
implications and how it compares to other measures of conservation and 
sequence constraint. Although coding exons are clearly under strong 
purifying selection, as represented by a low DR score, they represent 
only a small fraction of the regions with a low DR score. The large-scale 
sequencing described here, as well as the continued effort in sequenc-
ing the entire UKB, promises to vastly increase our understanding of 
the function and impact of the non-coding genome. When combined 
with the extensive characterization of phenotypic diversity in the UKB, 
these data should greatly improve our understanding of the relationship 
between human genome variation and phenotype diversity.
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Methods

Datasets
UKB data. The UKB phenotype and genotype data were collected fol-
lowing informed consent obtained from all participants. The North 
West Research Ethics Committee reviewed and approved the scien-
tific protocol and operational procedures (REC reference number:  
06/MRE08/65) of the UKB. Data for this study were obtained and  
research conducted under the UKB applications license numbers 
24898, 52293, 68574 and 69804. Sequence data were processed as 
described in Supplementary Notes 1–4, Supplementary Figs. 5–8 and 
Supplementary Tables 16 and 17.

Phenotypes were downloaded from the UKB. A total of 8,180, 1,291 
and 459 phenotypes were constructed for the XBI, XAF and XSA cohorts, 
respectively. The examples presented here were selected as noteworthy 
representative examples of association. The processing of phenotypes 
presented here, with reference to the field identity in the UKB data 
showcase, is provided in Supplementary Table 15.

Icelandic data. The gout sample set60, a total of 1,740 Icelandic indi-
viduals, was recruited through multiple sources. A subset of these in-
dividuals were regular users of anti-gout medication corresponding 
to the Anatomical Therapeutic Chemical Classification System class 
M04 (ATC-M04). Individuals using ATC-M04 were identified through 
questionnaires at the time of entry into genetics projects at deCODE and 
provided by the Directorate of Heahth from entry in the Prescription 
Medicines Register (2005-2020) or the Register of RAI Assessments 
and Minimum Data Set (MDS) for residents and applicants of nursing 
homes (1993–2018). Furthermore, about one-half had received a clinical 
diagnosis of gout (International Classification of Disease: ICD-9 code 274 
or ICD-10 code M10) between 1984 and 2019 at Landspitali, the National 
University Hospital of Iceland, or at two rheumatology clinics, or such a 
diagnosis was determined by examining RAI and MDS medical records.

Serum levels of uric acid in blood samples from 95,086 Icelandic 
individuals were obtained from Landspitali, the National University 
Hospital of Iceland, and the Icelandic Medical Center (Laeknasetrid) 
Laboratory in Mjodd (RAM) between 1990 and 2020. Serum levels of 
uric acid were normalized to a standard normal distribution using quan-
tile–quantile normalization and then adjusted for sex, year of birth and 
age at measurement. For individuals for whom more than one measure-
ment was available, we used the average of the normalized value. Serum 
levels of uric acid were determined from an enzymatic reaction in which 
uricase oxidizes urate to allantoin and hydrogen peroxide, which, with 
the aid of peroxidase and a dye, forms a coloured complex that can be 
measured in a photometer at a wavelength of 670 nm.

All participating individuals who donated blood signed informed con-
sent. The identities of participants were encrypted using a third-party 
system approved and monitored by the Icelandic Data Protection 
Authority. The study was approved by the National Bioethics Com-
mittee of Iceland (approval no. VSN-15-023) following evaluation of the 
Icelandic Data Protection Authority. All data processing complies with 
the instructions of the Data Protection Authority (PV_2017060950ÞS).

RNA sequence data analysis was approved by the Icelandic Data Pro-
tection Authority and the National Bioethics Committee of Iceland 
(no. VSNb2015030021).

Danish data. Data were provided from the Danish Blood Donor Study 
(DBDS)61. The DBDS genetic study has been approved by the Danish 
National Committee on Health Research Ethics (NVK-1700407) and by 
the Danish Capital Region Data Protection Office (P-2019-99).

SNP and indel calling with GraphTyper
Before running GraphTyper, we preprocessed all input compressed 
reference-oriented alignment map (CRAM) index (CRAI) indices by 
extracting a large single file containing all CRAI index entries with 

sample ID for a 50-kb window (with 1-kb padding at each side of the 
region) for all samples. For each region, we then created a chopped 
CRAI for each sample by processing the large file for the corresponding 
region, substantially reducing the amount of CRAI index entries read.

Furthermore, we created a sequence cache of the reference FASTA file 
using the ‘seq_cache_populate.pl’ script distributed with samtools 1.9. In 
each region, we copied the corresponding sequence cache to the local 
disk and used it for reading the CRAM files by setting the ‘REF_CACHE’ 
environment variable.

We ran GraphTyper (v2.7.1) using the ‘genotype’ subcommand.  
The full command that we ran was in the format:

graphtyper genotype ${UKBIO_REFERENCE} --sams=${SAMS} --sams_
index=${CRAI_TMP}/crai_filelist.txt --avg_cov_by_readlen=${COVERAGES} 
--region=${REGION} --threads=${THREADS} --verbose

Where UKBIO_REFERENCE is the GRCh38_full_analysis_set_plus_
decoy_hla FASTA sequence file, SAMS is a list of all input BAM/CRAM 
files, CRAI_TMP is a path to the chopped CRAI files on the local disk, 
COVERAGES is the coverage divided by the read length for each input 
file, REGION is the genotyping region and THREADS is the number of 
threads to use.

SNP and indel calling with GATK is given in Supplementary Note 5. 
Detailed comparisons of GraphTyper and GATK call sets are provided 
in Supplementary Notes 6 and 7, Supplementary Figs. 9–12 and Sup-
plementary Tables 18–21.

Running time. All jobs were run using 12 cores with 60 GB of reserved 
RAM. Approximately 1% of jobs were rerun using 24 cores with 120 GB 
reserved RAM. A few jobs requiring more cores and memory, with a 
single job finishing with 48 cores and 1,000 GB of RAM. Total reserved 
CPU time on cluster was 5.8 million CPU hours and total effective com-
pute time of 5.0 million CPU hours. The difference in these numbers is 
explained by the fact that not all cores reserved for the program may 
not utilize all at the same time.

SV calling with Manta and GraphTyper
We ran a SV genotyping pipeline similar to the one that we had previ-
ously applied to 49,962 Icelandic individuals50. In summary, we ran 
Manta48 v1.6 to discover SVs on all 150,119 individuals in the genotyping 
set. We also created a set of highly confident common SVs (imputation 
information above 0.95, with frequency above 0.1%) from our previ-
ous studies using both Illumina short reads50 and Oxford Nanopore 
long-read data49. Finally, we inferred a set of SVs from six publicly avail-
able assembly datasets using dipcall62, as previously described50. We 
used svimmer50 to merge these different SV datasets and we called the 
resulting SVs using GraphTyper50 version 2.7.1. By incorporating data 
from long-read data and high-quality assemblies, we were able to call 
more true SVs than using short reads only, particularly for common SVs.

A total of 895,054 variants were called, of which 637,321 variants 
were annotated as "Pass". Variant counts are presented for variants 
annotated by GraphTyper as "Pass", unless otherwise noted.

The majority of the SVs are deletions (81.3%); however, we observed 
only slightly more deletions than insertions and duplications on aver-
age per individual (Fig. 4a). This is because the source for many inser-
tions are long reads and assembly data, and thus many rare insertions 
are missing. Deletions are typically easier to discover in short-read 
data. Individuals who belong to the XAF cohort carry more SVs than 
in the other cohorts (Fig. 4b).

Imputation and phasing
The UKB samples were SNP chip genotyped with a custom-made Affy-
metrix chip, UK BiLEVE Axiom, in the first 50,000 individuals63, and the 
Affymetrix UKB Axiom array64 in the remaining participants. We used 
the existing long-range phasing of the SNP chip-genotyped samples5.

We excluced SNP and indel sequence variants in which at least 50% 
of the samples had no coverage (GQ score = 0), if the Hardy–Weinberg 
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P value was less than 10−30 or if heterozygous excess was less than 0.5 
or greater than 1.5.

We used the remaining sequence variants and the long-range-phased 
chip data to create a haplotype reference panel using in-house tools1,65. 
We then imputed the haplotype reference panel variants into the 
chip-genotyped samples using in-house tools and methods previously 
described1,65.

The imputation consists of estimating, for each haplotype, haplo-
type sharing with haplotypes in the haplotype reference panel, giving 
haplotype weights for each haplotype. These weights along with allele 
probabilities for each haplotype in the haplotype reference panel allow 
imputation with a Li and Stephens66 model similar to the one used 
in IMPUTE2 (ref. 67). Estimation of haplotype weights was based on 
long-range-phased chip haplotypes.

Sequence variant phasing consists of iteratively imputing the phase 
in each sequenced sample based on the other sequenced samples and 
the estimated phase from the last iteration. The imputed genotypes, 
along with the original genotypes, are weighted together to estimate 
new allele probabilites for the haplotypes. Imputation is done as 
described above.

We computed a leave-one-out r2 score (L1oR2) as the squared cor-
relation (r2 value) of the original genotype calls, with the genotypes 
imputed for each sample when excluding the original genotype of the 
sample from the imputation input.

Batch effects from the sequencing centre were discovered in both 
raw genotype (Supplementary Table 21) and imputed data (Supple-
mentary Table 22).

Identification of functionally important regions
To identify functionally important regions, we started by estimating 
whether reliable basecalls can be expected to be made at each site in 
the genome. The sequence coverage at each base pair in GRCh38 was 
computed for each of the 1,000 randomly selected individuals. At each 
base pair, we then computed the mean and s.d. of coverage across the 
1,000 individuals. Base pairs with mean coverage of at least 20 and s.d. 
coverage of at most 12 were considered reliable base pairs. Only vari-
ants in GraphTyperHQ (AAscore > 0.5) were considered in the analysis.

Recurrent mutations and spectra under saturation. Using the clas-
sification of SNP variants from above, we calculated the ratio of all SNPs 
in GraphTyperHQ that falls into each category. Then, we did the same 
restricting to singletons, that is, calculate the proportion of singletons 
falling into each mutation class. For comparison, we calculated the frac-
tions of each SNP class in all 181,258 SNPs from a curated list of 194,687 
de novo mutations in 2,976 Icelandic trios20. We used this distribution 
on mutation classes to calculate the transition to tranversion ratio in 
each case.

To get a list of recurrent mutations, we joined this list of de novo 
mutations with GraphTyperHQ.

Saturation for general mutation classes. We restricted our analysis 
to the reliable base pairs described above and grouped base pairs and 
their complement and considered each A or T base in the genome as 
a mutation opportunity for T>A, T>C or T>G mutations. Similarly, we 
considered each G or C base as a potential C>A, C>G or C>T mutation, 
splitting C>T into two classes based on whether they occur in a CpG 
context. We then computed the saturation ratio as the number of ob-
served mutations in GraphTyperHQ divided by the number of mutation 
opportunities at reliable base pairs. Computation was done separately 
for the autosomes and chromosome X. 95% CIs were computed using a 
normal approximation to the binomial distribution, treating each site 
as an independent observation.

Sites methylated in the germline. We determined sites on GRCh38 
that are methylated in the germ line using ENCODE whole-genome 

bisulfite sequencing9 data from samples of human testes and ovaries. 
More precisely, we used sample ENCFF946UQB and ENCFF157ZPP for 
testes and ENCFF561KYJ, ENCFF545XYI and ENCFF515OOQ for ovaries.

We assumed that methylation is strand symmetric and computed 
the methylation ratio for each CpG dinucleotide in a given tissue 
type by tabulating the number of reads supporting methylation or 
non-methylation in each dinucleotide, summing over all samples of 
a given tissue type and then computed the fraction of reads that sup-
port methylation.

We considered a site in a CpG dinucleotide on the reference genome 
methylated in the germ line if its methylation ratio was at least 0.7 in 
both testes and ovaries, and the combined depth was at least 20 for 
testes and 30 for ovaries, or 10 times the number of samples in each 
tissue type. This resulted in a list of 17,902,255 CpG (17,345,777 autoso-
mal) dinucleotides, with 35,804,510 (34,691,554 autosomal) CpG>TpG 
mutation opportunities.

Saturation at methylated CpG sites. For each potential CpG>TpG at a 
methylated site, we assessed its most significant potential consequence 
with Variant Effect Predictor68 v. 100. In the case of multiple such conse-
quences, we chose the alphabetically last one. We also classified them 
based on the functional classifications described above. For each class, 
we estimated the saturation as the ratio of variants of that functional 
class in GraphTyperHQ divided by the number of mutation opportu-
nities. 95% CIs were computed using a normal approximation to the 
binomial distribution, treating each site as an independent observation.

Depletion rank. We followed a methodology akin to a previously pub-
lished study27. A variant depletion score was computed for an overlap-
ping set of 500-bp windows in the genome with a 50-bp step size. A total 
of 49,104,026 500-bp windows in which at least 450 bp were considered 
reliable base pairs were considered for further analysis. We tallied the 
number of occurrences of each possible heptamer (H) and the number 
of times the central base pair in the heptamer was observed as a SNP (S), 
across the first set of non-overlapping windows. To account for regional 
mutational patterns in the genome69, we dichotomized the genome 
into two mutually exclusive subsets, inside and outside C>G-enriched 
regions (Supplementary Table 12 in ref. 69). The ratio S:H was then in-
terpreted as the expected mutation rate of the heptamer, separately 
for each of the two subsets. For each window, we then computed the 
observed number of variants (O) and then subtracted its expected num-
ber of variants (E), given its heptamers. This difference was divided by 
the square root of the expected value ((O−E)/√E). We exclued windows 
from the analysis in which the average AAscore was lower than 0.85 for 
variants within the window. These ((O−E)/√E) numbers were then sorted 
and the window with the i-th lowest depletion score was assigned a DR 
of 100(i−0.5)/n, where n is the total number of windows.

To compute DR restricted to the cohorts, we applied the same 
approach restricting to sequence variants that are present in each of 
the XBI, XSA and XAF cohorts.

Association testing
We tested for association with quantitative traits based on the linear 
mixed model implemented in BOLT-LMM70. We used BOLT-LMM to 
calculate leave-one-chromosome out residuals, which we then tested 
for association using simple linear regression. We used logistic regres-
sion to test for the association between sequence variants and binary 
traits. We tested variants for association under the additive model 
using the expected allele counts as a covariate for quantitative traits 
and integrating over the possible genotypes for binary traits. Sequenc-
ing status (whether the individual is one of the WGS individuals) and 
other available individual characteristics that correlated with the trait 
were also included in the model: sex, age and principal components 
(20 for XBI and XAF, 45 for XSA) to adjust for population stratification. 
Association analyses with XAF and XSA ethnicities have sample sizes of 



less than 10,000 and therefore were done with linear regression directly 
instead of BOLT-LMM. The correction factor used was the intercept of 
each regression analysis.

We used linkage disequilibrium (LD) score regression to account for 
distribution inflation in the dataset due to cryptic relatedness and popu-
lation stratification71. Using 1.1 million variants, we regressed the χ2 sta-
tistics from our GWAS against the LD score and used the intercepts as a 
correction factor. Effect sizes based on the leave-one-chromosome out 
residuals were shrunk and we rescaled them based on the shrinkage of 
the 1.1 million variants used in the LD score regression. Supplementary 
Table 24 lists statistics for the GWAS analysis of each of the association 
signals presented here. Manhattan plots, quantile–quantile plots and 
histograms of inverse-normal-transformed values after adjustment for 
covariates age, sex and 40 principal components can be found in Sup-
plementary Figs. 14 and 15 for quantitative and binary phenotypes, 
respectively. Locus plots for uric acid and menarche association can 
be found in Supplementary Fig. 16. OMIM32 and Open Targets72 annota-
tions of the genes presented are provided in Supplementary Table 14.

No statistical methods were used to predetermine sample size for 
association testing. All associations reported are for imputed geno-
types. For comparison purposes, associations were also performed 
on the genotypes directly. For the association testing perfomed on 
the directly genotyped markers, the same set of covariates were used, 
apart from sequencing status (as all individuals were sequenced), and 
also the sequencing centre (deCODE, Sanger main, Sanger Vanguard) 
was used as a covariate. Supplementary Table 25 shows the correla-
tion between the raw and the imputed genotypes and batch effects 
for sequencing centre in the XBI cohort.

An individual was deemed to be a carrier of an allele if the probability 
that the individual carried the allele was at least 0.9. The association 
analysis was limited to markers in which at least one (XAF, XSA), two 
(XBI, imputed dataset) or three (XBI, raw genotypes) individuals car-
ried the minor allele. As association tests are frequently limited to a 
subset of the individuals in the dataset, the association analysis was 
further limited to those markers in which there was at least one carrier 
among the individuals in the association test. In the imputed dataset, 
association tests were further limited to those markers with imputation 
information > 0.5 and in the raw genotype set to those markers with 
sequencing information > 0.8 (ref. 1).

Defining cohorts
Most studies of UKB data to date have been conducted on a list of 
409,554 ‘white British’ individuals created by the UKB on the basis of 
white British self-identification and clustering on genetic principal 
components derived from microarray genotypes5. Like some recent 
studies44,73,74, we wished to capitalize on the diversity in the UKB. To 
achieve this, we defined three cohorts based on the most common 
ancestries identified among the participants, using a combination of 
(1) uniform manifold approximation and projection (UMAP) dimension 
reduction of 40 genetic principal components provided by UKB, and 
(2) ADMIXTURE analysis supervised on five reference populations and 
self-reported ethnicity information.

To define the three cohorts, we followed previous work75 and applied 
UMAP to the 40 genetic principal components provided by the UKB. 
UMAP was performed in R using umap::umap() using default param-
eters in v0.2.3, notably, n_neighbours 15 and min_dist 0.1. UMAP placed 
the individuals in a two-dimensional latent space featuring several 
clusters and filaments. These structures showed a correspondence 
with self-described ethnicity (Supplementary Fig. 17).

To provide a separate measure of ancestry that we could use to 
inform our interpretation of the UMAP clusters, we superimposed 
results from a supervised ADMIXTURE58 analysis of the UKB microarray 
genotypes (Supplementary Section ADMIXTURE), using five training 
populations from the 1000 Genomes Project8: CEU (northern Europe-
ans from Utah), CHB (Han Chinese in Beijing), ITU (Indian Telugu in 

the UK), PEL (Peruvians in Lima) and YRI (Yoruba in Ibadan, Nigeria). 
We observed a clear correspondence between UMAP coordinates and 
ancestry proportions assigned by ADMIXTURE (Supplementary Figs. 18  
and 19). Using this correspondence and guided by self-reported eth-
nicity information, we defined the cohorts by manually delineating 
regions in the UMAP latent space that were limited to individuals 
with British–Irish ancestry (XBI; n = 431,805), South Asian ancestry 
(XSA; n = 9,633) and African ancestry (XAF; n = 9,252). This left 37,598 
individuals with genotype data, who were assigned to an arbitrary 
cohort that we refer to as OTH (for other). The distribution of ances-
try was estimated using ADMIXTURE in each of the four cohorts  
(Supplementary Fig. 18).

The most systematic difference between the XBI cohort and the pre-
vailing UKB-defined white British set is our inclusion in XBI of around 
12,500 individuals identifying as white Irish. This is clearly justified, 
given the known geographical and cultural proximity of the popula-
tions of Britain and the island of Ireland. More importantly, both our 
analyses (and those of previous publications) clearly reveal evidence 
for extensive gene flow between them. Thus, the main Irish genetic 
cluster appears in principal components analysis as an integrated com-
ponent of continuous variation in the UK (Extended Data Fig. 2), and 
is not clearly separated from others. Another major difference of the 
XBI cohort relative to the much-used white British set, is the addition 
of around 10,900 individuals who did not identify as white British, but 
we infered to have ancestry indistinguishable from British–Irish indi-
viduals. We note that the greater size of the XBI cohort should provide 
more statistical power to detect genotype–phenotype associations. 
Cohort definitions are described in further detail in Supplementary 
Notes 16–22 and Supplementary Figs. 20–22.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
WGS, genotype data, phased and imputed data can be accessed via the 
UKB research analysis platform (RAP): https://ukbiobank.dnanexus.
com/landing. The Research Analysis Platform is open to research-
ers who are listed as collaborators on UKB-approved access applica-
tions. Summary statistics for GWAS can be downloaded, for scientific 
purpose only, at https://www.decode.com/summarydata/. The DR 
score is included as supplementary data. Summary statistics for the 
Danish replication phenotype can be made available on request to 
O.B.P. Summary statistics for the Icelandic replication phenotype can 
be made avaliable on request to K.S. The human reference genome 
GRCh38 can be found at: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/ 
technical/reference/GRCh38_reference_genome/. Genome in a Bot-
tle  WGS samples can be found at: https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/data/. ENSEMBL: https://m.ensembl.org/info/
data/mysql.html.

Code availability
We used publicly available software (URLs are listed below) in con-
junction with the above described algorithms. BamQC (v 1.0.0): 
https://github.com/DecodeGenetics/BamQC. GraphTyper (v2.7.1): 
https://github.com/DecodeGenetics/graphtyper. GATK resource 
bundle (v4.0.12): gs://genomics-public-data/resources/broad/hg38/
v0. Svimmer (v0.1): https://github.com/DecodeGenetics/svimmer. 
popSTR (v2.0): https://github.com/DecodeGenetics/popSTR. Dip-
call (v0.1): https://github.com/lh3/dipcall. RTG Tools (v3.8.4): https://
github.com/RealTimeGenomics/rtg-tools. bcl2fastq (v2.20.0.422): 
https://support.illumina.com/sequencing/sequencing_software/
bcl2fastq-conversion-software.html. Samtools (v1.9): http://www.
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htslib.org/. Samblaster (v0.1.24): https://github.com/GregoryFaust/
samblaster. We used R (v3.6.0; https://www.r-project.org/) extensively 
to analyse data and create plots.
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Extended Data Fig. 1 | Average score in 500bp windows as a function of Depletion Rank for. a, CADD, b, Eigen, c, CDTS, and d, LINSIGHT. Green line represents 
average score, blue and red line 95-th percentile.
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Extended Data Fig. 2 | Geographic distribution of the loadings of the first four principal components of a PCA of the XBI population.



Extended Data Fig. 3 | Cartogram-pies indicating the proportion of individuals 
born in each country (name shown on top of pies) in the XBI cohort. Pies are 

placed roughly according to their country’s position on a world map. Grey and 
white squares represent sea and land respectively.
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Extended Data Fig. 4 | Cartogram-pies indicating the proportion of 
individuals born in each country (name shown on top of pies) in the XAF 

cohort. Pies are placed roughly according to their country’s position on a 
world map. Grey and white squares represent sea and land respectively.



Extended Data Fig. 5 | Cartogram-pies indicating the proportion of 
individuals born in each country (name shown on top of pies) in the XSA 

cohort. Pies are placed roughly according to their country’s position on a 
world map. Grey and white squares represent sea and land respectively.
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Extended Data Fig. 6 | Loss-of-function. a, Correlation between the number 
of LoF genes per sample and fraction of genome with runs of homozygosity. 
Shaded region represents 95% confidence interval. b, Number of homozygous 
loss-of-function (LoF) genes per sample. Count of homozygous genes 

annotated as high impact with frequency <1%. Results are presented for XBI, 
XAF, XSA excluding individuals self-identified as Pakistani, individuals 
self-identified as Pakistani from the XSA cohort and Others.



Extended Data Fig. 7 | Alternative alleles by region. Numbers in brackets 
beneath region names indicate count of whole genome sequenced individuals 
with birthplaces in that region. Assignment of countries to regions is almost 
identical to the categorization displayed in the cohort cartogram pie figures, 

with the exception that all European regions are combined into one region in 
this figure. Vertical lines underneath density curves represent 0th, 25th, 50th, 
75th, and 100th percentiles.
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Extended Data Fig. 8 | DR as a function of distance from coding exon partitioned by LOEUF22 deciles. Results are shown separately for the overall dataset (All) 
and the individual cohorts, XBI, XAF and XSA.



Extended Data Fig. 9 | RNA analysis of NMRK2. a, Coverage plot of 
RNA-sequenced reads from heart tissue from 169 heart tissue samples over the 
gene NMRK2. One individual is a carrier of a 754bp deletion depicted with gray 
rectangle that includes exon 6 of NMRK2. The RNA-coverage of the carrier 
(blue) is lower over exon 6 compared to median coverage of non-carriers 

(green). Shading marks the deleted region. b, Histogram of fraction of 
RNA-sequenced fragments skipping exon 6 in NMRK2 out of all fragments 
aligning from the donor site of exon 5 to either acceptor site of exon 6 or exon 7. 
The median fraction fragments skipping for wild-type individuals is 0.035 and 
0.57 for the carrier of the 754bp deletion.
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Extended Data Fig. 10 | Odds ratio for risk of myotonic dystrophy as a 
function of repeat length in microsatellite at the 3’ untranslated region of 
DMPK. Carriers of at least 39.7 copies of the microsatellite repeat motif have a 

162-fold increased risk of myotonic dystrophy. Error bars represent 95% 
confidence intervals, n = 431,079.
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