4,389 research outputs found
Choosing the lesser of two evils, the better of two goods: Specifying the roles of ventromedial prefrontal cortex and dorsal anterior cingulate in object choice
The ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortices (ACd) are considered important for reward-based decision making. However, work distinguishing their individual functional contributions has only begun. One aspect of decision making that has received little attention is that making the right choice often translates to making the better choice. Thus, response choice often occurs in situations where both options are desirable (e.g., choosing between mousse au chocolat or crĂšme caramel cheesecake from a menu) or, alternatively, in situations where both options are undesirable. Moreover, response choice is easier when the reinforcements associated with the objects are far apart, rather than close together, in value. We used functional magnetic resonance imaging to delineate the functional roles of the vmPFC and ACd by investigating these two aspects of decision making: (1) decision form (i.e., choosing between two objects to gain the greater reward or the lesser punishment), and (2) between-object reinforcement distance (i.e., the difference in reinforcements associated with the two objects). Blood oxygen level-dependent (BOLD) responses within the ACd and vmPFC were both related to decision form but differentially. Whereas ACd showed greater responses when deciding between objects to gain the lesser punishment, vmPFC showed greater responses when deciding between objects to gain the greater reward. Moreover, vmPFC was sensitive to reinforcement expectations associated with both the chosen and the forgone choice. In contrast, BOLD responses within ACd, but not vmPFC, related to between-object reinforcement distance, increasing as the distance between the reinforcements of the two objects decreased. These data are interpreted with reference to models of ACd and vmPFC functioning
Bang-bang control of fullerene qubits using ultra-fast phase gates
Quantum mechanics permits an entity, such as an atom, to exist in a
superposition of multiple states simultaneously. Quantum information processing
(QIP) harnesses this profound phenomenon to manipulate information in radically
new ways. A fundamental challenge in all QIP technologies is the corruption of
superposition in a quantum bit (qubit) through interaction with its
environment. Quantum bang-bang control provides a solution by repeatedly
applying `kicks' to a qubit, thus disrupting an environmental interaction.
However, the speed and precision required for the kick operations has presented
an obstacle to experimental realization. Here we demonstrate a phase gate of
unprecedented speed on a nuclear spin qubit in a fullerene molecule (N@C60),
and use it to bang-bang decouple the qubit from a strong environmental
interaction. We can thus trap the qubit in closed cycles on the Bloch sphere,
or lock it in a given state for an arbitrary period. Our procedure uses
operations on a second qubit, an electron spin, in order to generate an
arbitrary phase on the nuclear qubit. We anticipate the approach will be vital
for QIP technologies, especially at the molecular scale where other strategies,
such as electrode switching, are unfeasible
School polices, programmes and facilities, and objectively measured sedentary time, LPA and MVPA: associations in secondary school and over the transition from primary to secondary school.
BACKGROUND: There is increasing policy interest in ensuring that the school environment supports healthy behaviours. We examined the cross-sectional and longitudinal associations between schools' policies, programmes and facilities for physical activity (PA) and adolescents' objectively-measured activity intensity during the school day and lunchtime. METHODS: Accelerometer-derived PA (proportion of time spent in sedentary (SED), light PA (LPA) and moderate-to-vigorous PA (MVPA)) during school hours and lunchtime from 325 participants in the SPEEDY study were obtained from baseline measurements (primary school, age 9/10 years) and +4y follow-up (secondary school). School environment characteristics were assessed by teacher questionnaire. Multivariable multi-level linear regression analyses accounting for school and adjusted for sex, age, BMI and family socio-economic status assessed cross-sectional associations with lunchtime and school-day SED, LPA and MVPA; effect modification by sex was investigated. The association of changes in school environment with changes in outcomes was examined using multivariable cross-classified linear regression models. RESULTS: There were significant differences between primary and secondary schools for 6/10 school environment characteristics investigated (including secondary schools reporting shorter breaks, more lunchtime PA opportunities, and higher number of sports facilities). Cross-sectional analyses showed that boys attending secondary schools with longer breaks spent significantly less time in SED and more time in MVPA during the school day. Longitudinally, an increase in break-time duration between primary and secondary school was associated with smaller reductions in MVPA during the school day. Moreover, participants who moved from a primary school that did not provide opportunities for PA at lunchtime to a secondary school that did provide such opportunities exhibited smaller increases in SED and smaller reductions in MVPA at lunchtime. CONCLUSIONS: Schools should consider the potential negative impact of reducing break time duration on students' MVPA and SED during the school day. School-based interventions that combine longer breaks and more PA opportunities during lunchtime may be a fruitful direction for future research. Further research should also explore other factors in the school environment to explain the school-level clustering observed, and study sex differences in the way that the school environment influences activity intensity for adolescent populations.This report is independent research commissioned and funded by the Department of Health Policy Research Programme (Opportunities within the school environment to shift the distribution of activity intensity in adolescents, PR-R5-0213-25001). The views expressed in this publication are those of the author(s) and not necessarily those of the department of health. The SPEEDY study is funded by the National Prevention Research Initiative (http://âwww.ânpri.âorg.âuk), consisting of the following Funding Partners: British Heart Foundation; Cancer Research UK; Department of Health; Diabetes UK; Economic and Social Research Council; Medical Research Council; Health and Social Care Research and Development Office for the Northern Ireland; Chief Scientist Office, Scottish Government Health Directorates; Welsh Assembly Government and World Cancer Research Fund. This work was also supported by the Medical Research Council (Unit Programme numbers MC_UU_12015/7, MC_UU_12015/4, and MC_UU_12015/3) and the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Centre of Excellence. Funding from the British Heart Foundation, Economic and Social Research Council, Medical Research Council, the National Institute for Health Research, and the Wellcome Trust, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12966-016-0378-
Chern-Simons Invariants of Torus Links
We compute the vacuum expectation values of torus knot operators in
Chern-Simons theory, and we obtain explicit formulae for all classical gauge
groups and for arbitrary representations. We reproduce a known formula for the
HOMFLY invariants of torus links and we obtain an analogous formula for
Kauffman invariants. We also derive a formula for cable knots. We use our
results to test a recently proposed conjecture that relates HOMFLY and Kauffman
invariants.Comment: 20 pages, 5 figures; v2: minor changes, version submitted to AHP. The
final publication is available at
http://www.springerlink.com/content/a2614232873l76h6
Application of a Novel Algorithm for Expanding Newborn Screening for Inherited Metabolic Disorders across Europe
Inherited metabolic disorders (IMDs) are mostly rare, have overlapping symptoms, and can be devastating and progressive. However, in many disorders, early intervention can improve long-term outcomes, and newborn screening (NBS) programmes can reduce caregiver stress in the journey to diagnosis and allow patients to receive early, and potentially pre-symptomatic, treatment. Across Europe there are vast discrepancies in the number of IMDs that are screened for and there is an imminent opportunity to accelerate the expansion of evidence-based screening programmes and reduce the disparities in screening programmes across Europe. A comprehensive list of IMDs was created for analysis. A novel NBS evaluation algorithm, described by Burlina et al. in 2021, was used to assess and prioritise IMDs for inclusion on expanded NBS programmes across Europe. Forty-eight IMDs, of which twenty-one were lysosomal storage disorders (LSDs), were identified and assessed with the novel NBS evaluation algorithm. Thirty-five disorders most strongly fulfil the Wilson and Jungner classic screening principles and should be considered for inclusion in NBS programmes across Europe. The recommended disorders should be evaluated at the national level to assess the economic, societal, and political aspects of potential screening programmes
Quantum Knitting
We analyze the connections between the mathematical theory of knots and
quantum physics by addressing a number of algorithmic questions related to both
knots and braid groups.
Knots can be distinguished by means of `knot invariants', among which the
Jones polynomial plays a prominent role, since it can be associated with
observables in topological quantum field theory.
Although the problem of computing the Jones polynomial is intractable in the
framework of classical complexity theory, it has been recently recognized that
a quantum computer is capable of approximating it in an efficient way. The
quantum algorithms discussed here represent a breakthrough for quantum
computation, since approximating the Jones polynomial is actually a `universal
problem', namely the hardest problem that a quantum computer can efficiently
handle.Comment: 29 pages, 5 figures; to appear in Laser Journa
Scoping Potential Routes to UK Civil Unrest via the Food System: Results of a Structured Expert Elicitation
We report the results of a structured expert elicitation to identify the most likely types of potential food system disruption scenarios for the UK, focusing on routes to civil unrest. We take a backcasting approach by defining as an end-point a societal event in which 1 in 2000 people have been injured in the UK, which 40% of experts rated as âPossible (20â50%)â, âMore likely than not (50â80%)â or âVery likely (>80%)â over the coming decade. Over a timeframe of 50 years, this increased to 80% of experts. The experts considered two food system scenarios and ranked their plausibility of contributing to the given societal scenario. For a timescale of 10 years, the majority identified a food distribution problem as the most likely. Over a timescale of 50 years, the experts were more evenly split between the two scenarios, but over half thought the most likely route to civil unrest would be a lack of total food in the UK. However, the experts stressed that the various causes of food system disruption are interconnected and can create cascading risks, highlighting the importance of a systems approach. We encourage food system stakeholders to use these results in their risk planning and recommend future work to support prevention, preparedness, response and recovery planning
Life in a warm deep sea: routine activity and burst swimming performance of the shrimp Acanthephyra eximia in the abyssal Mediterranean
Measurements of routine swimming speed, "tail-flip'' escape responses, and oxygen consumptions were made of the deep-sea shrimp Acanthephyra eximia using autonomous landers in the Rhodos Basin at depths of up to 4,400 m and temperatures of 13 - 14.5 degrees C. Routine swimming speeds at 4,200 m averaged 0.18 m s(-1) or 3.09 body lengths s(-1), approximately double those of functionally similar oceanic scavengers. During escape responses peak accelerations of 23 m s(-2) or 630.6 body lengths s(-2) were recorded, with animals reaching speeds of 1.61 m s(-1) or 34.8 body lengths s(-2). When compared to shallow-water decapods at similar temperatures these values are low for a lightly calcified shrimp such as A. eximia despite a maximum muscle mass specific power output of 90.0 W kg(-1). A preliminary oxygen consumption measurement indicated similar rates to those of oceanic crustacean scavengers and shallower-living Mediterranean crustaceans once size and temperature had been taken into account. These animals appear to have high routine swimming speeds but low burst muscle performances. This suite of traits can be accounted for by high competition for limited resources in the eastern Mediterranean, but low selective pressure for burst swimming due to reductions in predator pressure
Restriction endonuclease TseI cleaves A:A and T:T mismatches in CAG and CTG repeats.
The type II restriction endonuclease TseI recognizes the DNA target sequence 5'-G^CWGC-3' (where W = A or T) and cleaves after the first G to produce fragments with three-base 5'-overhangs. We have determined that it is a dimeric protein capable of cleaving not only its target sequence but also one containing A:A or T:T mismatches at the central base pair in the target sequence. The cleavage of targets containing these mismatches is as efficient as cleavage of the correct target sequence containing a central A:T base pair. The cleavage mechanism does not apparently use a base flipping mechanism as found for some other type II restriction endonuclease recognizing similarly degenerate target sequences. The ability of TseI to cleave targets with mismatches means that it can cleave the unusual DNA hairpin structures containing A:A or T:T mismatches formed by the repetitive DNA sequences associated with Huntington's disease (CAG repeats) and myotonic dystrophy type 1 (CTG repeats)
First measurement of Mg isotope abundances at high redshifts and accurate estimate of Delta alpha/alpha
(Abridged) We use a high-resolution spectrum of the quasar HE0001-2340
observed with the UVES/VLT to measure Mg isotope abundances in the intervening
absorption-line systems at high redshifts. Line profiles are prepared
accounting for possible shifts between the individual exposures. Due to unique
composition of the selected systems - the presence of several transitions of
the same ion - we can test the local accuracy of the wavelength scale
calibration which is the main source of errors in the sub-pixel line position
measurements. In the system at zabs = 0.45 which is probably a fragment of the
outflow caused by SN Ia explosion of high-metallicity white dwarf(s) we
measured velocity shifts of MgII and MgI lines relative to other lines (FeI,
FeII, CaI, CaII): Delta V(MgII) = -0.44 +/- 0.05 km/s and Delta V(MgI) = -0.17
+/- 0.17$ km/s. This translates into the isotopic ratio 24Mg:25Mg:26Mg = (19
+/- 11):(22 +/- 13):(59 +/- 6) with a strong relative overabundance of heavy Mg
isotopes, (25Mg+26Mg)/24Mg = 4, as compared to the solar ratio 24Mg:25Mg:26Mg =
79:10:11, and (25Mg+26Mg)/24Mg = 0.3. At zabs = 1.58, we put a strong
constraint on a putative variation of alpha: Delta alpha/alpha = (-1.5 +/-
2.6)x10^{-6} which is one of the most stringent limits obtained from optical
spectra of QSOs. We reveal that the wavelength calibration in the range above
7500 A is subject to systematic wavelength-dependent drifts.Comment: 20 pages, 13 figures, 7 tables. Accepted for publication in Astronomy
and Astrophysic
- âŠ