33 research outputs found

    The SAMI Galaxy Survey: Data Release One with emission-line physics value-added products

    Get PDF
    We present the first major release of data from the SAMI Galaxy Survey. This data release focuses on the emission-line physics of galaxies. Data Release One includes data for 772 galaxies, about 20 per cent of the full survey. Galaxies included have the redshift range 0.004 < z < 0.092, a large mass range (7.6 < logM*/M⊙ < 11.6), and star formation rates of ~10-4 to ~101M⊙ yr-1. For each galaxy, we include two spectral cubes and a set of spatially resolved 2D maps: single- and multi-component emission-line fits (with dust-extinction corrections for strong lines), local dust extinction, and star formation rate. Calibration of the fibre throughputs, fluxes, and differential atmospheric refraction has been improved over the Early Data Release. The data have average spatial resolution of 2.16 arcsec (full width at half-maximum) over the 15 arcsec diameter field of view and spectral (kinematic) resolution of R = 4263 (σ = 30 km s-1) around Ha. The relative flux calibration is better than 5 per cent, and absolute flux calibration has an rms of 10 per cent. The data are presented online through the Australian Astronomical Observatory's Data Central

    Treasurehunt: Transients and variability discovered with HST in the JWST North Ecliptic Pole time-domain field

    Get PDF
    The James Webb Space Telescope (JWST) North Ecliptic Pole (NEP) Time-domain Field (TDF) is a >14' diameter field optimized for multiwavelength time-domain science with JWST. It has been observed across the electromagnetic spectrum both from the ground and from space, including with the Hubble Space Telescope (HST). As part of HST observations over three cycles (the "TREASUREHUNT" program), deep images were obtained with the Wide Field Camera on the Advanced Camera for Surveys in F435W and F606W that cover almost the entire JWST NEP TDF. Many of the individual pointings of these programs partially overlap, allowing an initial assessment of the potential of this field for time-domain science with HST and JWST. The cumulative area of overlapping pointings is ∼88 arcmin2, with time intervals between individual epochs that range between 1 day and 4+ yr. To a depth of mAB ≃ 29.5 mag (F606W), we present the discovery of 12 transients and 190 variable candidates. For the variable candidates, we demonstrate that Gaussian statistics are applicable and estimate that ∼80 are false positives. The majority of the transients will be supernovae, although at least two are likely quasars. Most variable candidates are active galactic nuclei (AGNs), where we find 0.42% of the general z ≲ 6 field galaxy population to vary at the ∼3σ level. Based on a 5 yr time frame, this translates into a random supernova areal density of up to ∼0.07 transients arcmin−2 (∼245 deg−2) per epoch and a variable AGN areal density of ∼1.25 variables arcmin−2 (∼4500 deg−2) to these depths

    Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06

    Get PDF
    We determine the low-redshift field galaxy stellar mass function (GSMF) using an area of 143 deg2 from the first three years of the Galaxy And Mass Assembly (GAMA) survey. The magnitude limits of this redshift survey are r < 19.4 mag over two-thirds and 19.8 mag over one-third of the area. The GSMF is determined from a sample of 5210 galaxies using a density-corrected maximum volume method. This efficiently overcomes the issue of fluctuations in the number density versus redshift. With H0= 70 km s−1 Mpc−1, the GSMF is well described between 108 and 1011.5 M⊙ using a double Schechter function with Graphic, Graphic, α1=−0.35, Graphic and α2=−1.47. This result is more robust to uncertainties in the flow-model corrected redshifts than from the shallower Sloan Digital Sky Survey main sample (r < 17.8 mag). The upturn in the GSMF is also seen directly in the i-band and K-band galaxy luminosity functions. Accurately measuring the GSMF below 108 M⊙ is possible within the GAMA survey volume but as expected requires deeper imaging data to address the contribution from low surface-brightness galaxies

    Galaxy And Mass Assembly (GAMA): the bright void galaxy population in the optical and mid-IR

    Get PDF
    We examine the properties of galaxies in the Galaxies and Mass Assembly (GAMA) survey located in voids with radii >10 h−1 Mpc. Utilizing the GAMA equatorial survey, 592 void galaxies are identified out to z ≈ 0.1 brighter than Mr = −18.4, our magnitude completeness limit. Using the WHα versus [N ii]/Hα (WHAN) line strength diagnostic diagram, we classify their spectra as star forming, AGN, or dominated by old stellar populations. For objects more massive than 5 × 109 M⊙, we identify a sample of 26 void galaxies with old stellar populations classed as passive and retired galaxies in the WHAN diagnostic diagram, else they lack any emission lines in their spectra. When matched to Wide-field Infrared Survey Explorer mid-IR photometry, these passive and retired galaxies exhibit a range of mid-IR colour, with a number of void galaxies exhibiting [4.6] − [12] colours inconsistent with completely quenched stellar populations, with a similar spread in colour seen for a randomly drawn non-void comparison sample. We hypothesize that a number of these galaxies host obscured star formation, else they are star forming outside of their central regions targeted for single-fibre spectroscopy. When matched to a randomly drawn sample of non-void galaxies, the void and non-void galaxies exhibit similar properties in terms of optical and mid-IR colour, morphology, and star formation activity, suggesting comparable mass assembly and quenching histories. A trend in mid-IR [4.6] − [12] colour is seen, such that both void and non-void galaxies with quenched/passive colours <1.5 typically have masses higher than 1010 M⊙, where internally driven processes play an increasingly important role in galaxy evolution

    Galaxy And Mass Assembly (GAMA): the input catalogue and star-galaxy separation

    Get PDF
    We describe the spectroscopic target selection for the Galaxy And Mass Assembly (GAMA) survey. The input catalogue is drawn from the Sloan Digital Sky Survey (SDSS) and UKIRT Infrared Deep Sky Survey (UKIDSS). The aim is to measure redshifts for galaxies in three 4x12 degree regions at 9h, 12h and 14.5h, on the celestial equator, with magnitude selections r < 19.4, z < 18.2 and K(AB) < 17.6 over all three regions, and r < 19.8 in the 12-h region. The target density is 1080 per sq. deg. in the 12-h region and 720 per sq. deg. in the other regions. The average GAMA target density and area are compared with completed and ongoing galaxy redshift surveys. The GAMA survey implements a highly complete star-galaxy separation that jointly uses an intensity-profile separator (delta(sg) = r-band psf mag - model mag) as per the SDSS) and a colour separator. The colour separator is defined as delta(sg,jk) = J - K - f(g-i), where f(g-i) is a quadratic fit to the J-K colour of the stellar locus over the range 0.3 < g-i < 2.3. All galaxy populations investigated are well separated with delta(sg,jk) > 0.2. From two years out of a three-year AAOmega program on the Anglo-Australian Telescope, we have obtained 79599 unique galaxy redshifts. Previously known redshifts in the GAMA region bring the total up to 98497. The median galaxy redshift is 0.2 with 99% at z < 0.5. We present some of the global statistical properties of the survey, including K-band galaxy counts, colour-redshift relations and preliminary n(z).Comment: 15 pages, 15 figures, accepted by MNRAS; v2 includes new figure with K-band galaxy counts, more description of UKIDSS reduction, and other minor change

    Galaxy And Mass Assembly (GAMA) : galaxy environments and star formation rate variations

    Get PDF
    We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < −17.8. We investigate the known SFR–density relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFR–density trend is only visible when we include the passive galaxy population along with the star-forming population. This SFR–density relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHα on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a ‘star-forming’ sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHα with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFR–density relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode
    corecore