226 research outputs found

    X-ray properties of K-selected galaxies at 0.5<z<2.0: Investigating trends with stellar mass, redshift and spectral type

    Full text link
    We examine how the total X-ray luminosity correlates with stellar mass, stellar population, and redshift for a K-band limited sample of ~3500 galaxies at 0.5<z<2.0 from the NEWFIRM Medium Band Survey in the COSMOS field. The galaxy sample is divided into 32 different galaxy types, based on similarities between the spectral energy distributions. For each galaxy type, we further divide the sample into bins of redshift and stellar mass, and perform an X-ray stacking analysis using the Chandra COSMOS (C-COSMOS) data. We find that full band X-ray luminosity is primarily increasing with stellar mass, and at similar mass and spectral type is higher at larger redshifts. When comparing at the same stellar mass, we find that the X-ray luminosity is slightly higher for younger galaxies (i.e., weaker 4000\AA breaks), but the scatter in this relation is large. We compare the observed X-ray luminosities to those expected from low and high mass X-ray binaries (XRBs). For blue galaxies, XRBs can almost fully account for the observed emission, while for older galaxies with larger 4000\AA breaks, active galactic nuclei (AGN) or hot gas dominate the measured X-ray flux. After correcting for XRBs, the X-ray luminosity is still slightly higher in younger galaxies, although this correlation is not significant. AGN appear to be a larger component of galaxy X-ray luminosity at earlier times, as the hardness ratio increases with redshift. Together with the slight increase in X-ray luminosity this may indicate more obscured AGNs or higher accretion rates at earlier times.Comment: 9 pages, 9 figures, ApJ accepte

    A Bare Molecular Cloud at \u3cem\u3ez\u3c/em\u3e ~ 0.45*

    Get PDF
    Several neutral species (Mg I, Si I, Ca I, Fe I) have been detected in a weak Mg II absorption line system (Wr (2796) ~ 0.15 Å) at z ~ 0.45 along the sightline toward HE0001-2340. These observations require extreme physical conditions, as noted in D\u27Odorico. We place further constraints on the properties of this system by running a wide grid of photoionization models, determining that the absorbing cloud that produces the neutral absorption is extremely dense (~100-1000 cm-3), cold (\u3c 100 K), and has significant molecular content (~72%-94%). Structures of this size and temperature have been detected in Milky Way CO surveys and have been predicted in hydrodynamic simulations of turbulent gas. In order to explain the observed line profiles in all neutral and singly ionized chemical transitions, the lines must suffer from unresolved saturation and/or the absorber must partially cover the broad emission line region of the background quasar. In addition to this highly unusual cloud, three other ordinary weak Mg II clouds (within densities of ~0.005 cm-3 and temperatures of ~10, 000 K) lie within 500 km s-1 along the same sightline. We suggest that the \u27\u27bare molecular cloud,\u27\u27 which appears to reside outside of a galaxy disk, may have had in situ star formation and may evolve into an ordinary weak Mg II absorbing cloud. Based on public data obtained from the ESO archive of observations from the UVES spectrograph at the VLT, Paranal, Chile

    Fabrication and Assessment of 3D Printed Anatomical Models of the Lower Limb for Anatomical Teaching and Femoral Vessel Access Training in Medicine

    Get PDF
    For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial cadavers are manufactured through three-dimensional (3D) printing of patient specific radiological data sets. In this article, a simple powder based printer is made more versatile to manufacture hard bones, silicone muscles and perfusable blood vessels. The approach involves blending modern approaches (3D printing) with more ancient ones (casting and lost-wax techniques). These anatomically accurate models can augment the approach to anatomy teaching from dissection to synthesis of 3D-printed parts held together with embedded rare earth magnets. Vascular simulation is possible through application of pumps and artificial blood. The resulting arteries and veins can be cannulated and imaged with Doppler ultrasound. In some respects, 3D-printed anatomy is superior to older teaching methods because the parts are cheap, scalable, they can cover the entire age span, they can be both dissected and reassembled and the data files can be printed anywhere in the world and mass produced. Anatomical diversity can be collated as a digital repository and reprinted rather than waiting for the rare variant to appear in the dissection room. It is predicted that 3D printing will revolutionize anatomy when poly-material printing is perfected in the early 21st century. (C) 2015 American Association of Anatomists

    Fabrication and Assessment of 3D Printed Anatomical Models of the Lower Limb for Anatomical Teaching and Femoral Vessel Access Training in Medicine

    Get PDF
    For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial cadavers are manufactured through three-dimensional (3D) printing of patient specific radiological data sets. In this article, a simple powder based printer is made more versatile to manufacture hard bones, silicone muscles and perfusable blood vessels. The approach involves blending modern approaches (3D printing) with more ancient ones (casting and lost-wax techniques). These anatomically accurate models can augment the approach to anatomy teaching from dissection to synthesis of 3D-printed parts held together with embedded rare earth magnets. Vascular simulation is possible through application of pumps and artificial blood. The resulting arteries and veins can be cannulated and imaged with Doppler ultrasound. In some respects, 3D-printed anatomy is superior to older teaching methods because the parts are cheap, scalable, they can cover the entire age span, they can be both dissected and reassembled and the data files can be printed anywhere in the world and mass produced. Anatomical diversity can be collated as a digital repository and reprinted rather than waiting for the rare variant to appear in the dissection room. It is predicted that 3D printing will revolutionize anatomy when poly-material printing is perfected in the early 21st century. (C) 2015 American Association of Anatomists

    X-Ray Properties of K-Selected Galaxies at 0.5 Less than z Less than 2.0: Investigating Trends with Stellar Mass, Redshift and Spectral Type

    Get PDF
    We examine how the total X-ray luminosity correlates with stellar mass, stellar population, and redshift for a K-band limited sample of approximately 3500 galaxies at 0.5 < z < 2.0 from the NEWFIRM Medium Band Survey in the COSMOS field. The galaxy sample is divided into 32 different galaxy types, based on similarities between the spectral energy distributions. For each galaxy type, we further divide the sample into bins of redshift and stellar mass, and perform an X-ray stacking analysis using the Chandra COSMOS data. We find that full band X-ray luminosity is primarily increasing with stellar mass, and at similar mass and spectral type is higher at larger redshifts. When comparing at the same stellar mass, we find that the X-ray luminosity is slightly higher for younger galaxies (i.e., weaker 4000 angstrom breaks), but the scatter in this relation is large. We compare the observed X-ray luminosities to those expected from low- and high-mass X-ray binaries (XRBs). For blue galaxies, XRBs can almost fully account for the observed emission, while for older galaxies with larger 4000 angstrom breaks, active galactic nuclei (AGN) or hot gas dominate the measured X-ray flux. After correcting for XRBs, the X-ray luminosity is still slightly higher in younger galaxies, although this correlation is not significant. AGN appear to be a larger component of galaxy X-ray luminosity at earlier times, as the hardness ratio increases with redshift. Together with the slight increase in X-ray luminosity this may indicate more obscured AGNs or higher accretion rates at earlier times

    A Bare Molecular Cloud at z~0.45

    Get PDF
    Several neutral species (MgI, SiI, CaI, FeI) have been detected in a weak MgII absorption line system (W_r(2796)~0.15 Angstroms) at z~0.45 along the sightline toward HE0001-2340. These observations require extreme physical conditions, as noted in D'Odorico (2007). We place further constraints on the properties of this system by running a wide grid of photoionization models, determining that the absorbing cloud that produces the neutral absorption is extremely dense (~100-1000/cm^3), cold (<100 K), and has significant molecular content (~72-94%). Structures of this size and temperature have been detected in Milky Way CO surveys, and have been predicted in hydrodynamic simulations of turbulent gas. In order to explain the observed line profiles in all neutral and singly ionized chemical transitions, the lines must suffer from unresolved saturation and/or the absorber must partially cover the broad emission line region of the background quasar. In addition to this highly unusual cloud, three other ordinary weak MgII clouds (within densities of ~0.005/cm^3 and temperatures of ~10000K) lie within 500 km/s along the same sightline. We suggest that the "bare molecular cloud", which appears to reside outside of a galaxy disk, may have had in situ star formation and may evolve into an ordinary weak MgII absorbing cloud.Comment: 15 pages, 4 figures, 4 tables, ApJ accepte

    White matter microstructure in 22q11 deletion syndrome: a pilot diffusion tensor imaging and voxel-based morphometry study of children and adolescents

    Get PDF
    Young people with 22q11 Deletion Syndrome (22q11DS) are at substantial risk for developing psychosis and have significant differences in white matter (WM) volume. However, there are few in vivo studies of both WM microstructural integrity (as measured using Diffusion Tensor (DT)-MRI) and WM volume in the same individual. We used DT-MRI and structural MRI (sMRI) with voxel based morphometry (VBM) to compare, respectively, the fractional anisotropy (FA) and WM volume of 11 children and adolescents with 22q11DS and 12 controls. Also, within 22q11DS we related differences in WM to severity of schizotypy, and polymorphism of the catechol-O-methyltransferase (COMT) gene. People with 22q11DS had significantly lower FA in inter-hemispheric and brainstem and frontal, parietal and temporal lobe regions after covarying for IQ. Significant WM volumetric increases were found in the internal capsule, anterior brainstem and frontal and occipital lobes. There was a significant negative correlation between increased schizotypy scores and reduced WM FA in the right posterior limb of internal capsule and the right body and left splenium of corpus callosum. Finally, the Val allele of COMT was associated with a significant reduction in both FA and volume of WM in the frontal lobes, cingulum and corpus callosum. Young people with 22q11DS have significant differences in both WM microstructure and volume. Also, there is preliminary evidence that within 22q11DS, some regional differences in FA are associated with allelic variation in COMT and may perhaps also be associated with schizotypy

    Associations between health-related quality of life, physical function and fear of falling in older fallers receiving home care

    Get PDF
    Falls and injuries in older adults have significant consequences and costs, both personal and to society. Although having a high incidence of falls, high prevalence of fear of falling and a lower quality of life, older adults receiving home care are underrepresented in research on older fallers. The objective of this study is to determine the associations between health-related quality of life (HRQOL), fear of falling and physical function in older fallers receiving home care
    corecore