302 research outputs found
Climate Action In Megacities 3.0
"Climate Action in Megacities 3.0" (CAM 3.0) presents major new insights into the current status, latest trends and future potential for climate action at the city level. Documenting the volume of action being taken by cities, CAM 3.0 marks a new chapter in the C40-Arup research partnership, supported by the City Leadership Initiative at University College London. It provides compelling evidence about cities' commitment to tackling climate change and their critical role in the fight to achieve global emissions reductions
No experimental evidence of stress-induced hyperthermia in zebrafish (Danio rerio)
NJ was supported by a studentship from The Fisheries Society of The British Isles.Stress-induced hyperthermia (SIH) is characterised by a rise in body temperature in response to a stressor. In endotherms SIH is mediated by the autonomic nervous system, whereas ectotherms must raise their body temperature via behavioural means by moving to warmer areas within their environment (behavioural thermoregulation). A recent study suggested that zebrafish (Danio rerio), an important model species, may move to warmer water in response to handling and confinement and thus exhibit SIH, which, if accepted, may have important practical and welfare implications. However an alternative hypothesis proposed that the observed movements may been produced by avoidance behaviour rather than behavioural thermoregulation. Investigating the claims for SIH in zebrafish further we conducted two experiments that extend the earlier study. The first experiment incorporated new conditions that considered fish behaviour in the absence of thermal variation, i.e. their null distribution, an important condition that was not performed in the original study. The second was a refined version of the experiment to reduce the numbers of fish and aid movement between areas for the fish. In contrast to the previous study, we saw no effect of handling or confinement on preference for warmer areas, and no evidence for SIH in either experiment. Instead we observed a short-lived reduction in preference for warmer areas immediately post stress. Our work suggests that zebrafish may not experience SIH and claims regarding fish consciousness based on SIH may need to be revised.PostprintPeer reviewe
The effect on behavior and bone mineral density of individualized bone mineral density feedback and educational interventions in premenopausal women: a randomized controlled trial [NCT00273260]
BACKGROUND: Limited information is available on ways to influence osteoporosis risk in premenopausal women. This study tested four hypotheses regarding the effects of individualized bone density (BMD) feedback and different educational interventions on osteoporosis preventive behavior and BMD in pre-menopausal women, namely: that women are more likely to change calcium intake and physical activity if their BMD is low; that group education will be more efficacious at changing behavior than an information leaflet; that BMD feedback and group education have independent effects on behavior and BMD; and, that women who improve their physical activity or calcium intake will have a change in bone mass over 2 years that is better than those who do not alter their behavior. METHODS: We performed a 2-year randomized controlled trial of BMD feedback according to T-score and either an osteoporosis information leaflet or small group education in a population-based random sample of 470 healthy women aged 25–44 years (response rate 64%). Main outcome measures were dietary calcium intake, calcium supplement use, smoking behavior, physical activity, endurance fitness, lower limb strength and BMD. We used paired t-tests, one-way ANOVA and linear regression techniques for data analysis. RESULTS: Women who had feedback of low BMD had a greater increase in femoral neck BMD than those with normal BMD (1.6% p.a. vs. 0.7% p.a., p = 0.0001), but there was no difference in lumbar spine BMD change between these groups (0.1% p.a. vs. 0.08% p.a., p = 0.9). Both educational interventions had similar increases in femoral neck BMD (Leaflet = +1.0% p.a., Osteoporosis self-management course = + 1.3% p.a., p = 0.4). Femoral neck BMD change was only significantly associated with starting calcium supplements (1.3 % p.a, 95%CI +0.49, +2.17) and persistent self-reported change in physical activity levels (0.7% p.a., 95%CI +0.22, +1.22). CONCLUSION: Individualized BMD feedback combined with a minimal educational intervention is effective at increasing hip but not spine bone density in premenopausal women. The changes in behavior through which this was mediated are potentially important in the prevention of other diseases, thus measuring BMD at a young age may have substantial public health benefits, particularly if these changes are sustained
The Importance of Human FcγRI in Mediating Protection to Malaria
The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcγRI. This important finding documents the capacity of FcγRI to mediate potent antimalaria immunity and supports the development of FcγRI-directed therapy for human malaria
CTCF binds to sites in the major histocompatibility complex that are rapidly reconfigured in response to interferon-gamma
Activation of the major histocompatibility complex (MHC) by interferon-gamma (IFN−γ) is a fundamental step in the adaptive immune response to pathogens. Here, we show that reorganization of chromatin loop domains in the MHC is evident within the first 30 min of IFN−γ treatment of fibroblasts, and that further dynamic alterations occur up to 6 h. These very rapid changes occur at genomic sites which are occupied by CTCF and are close to IFN−γ-inducible MHC genes. Early responses to IFN−γ are thus initiated independently of CIITA, the master regulator of MHC class II genes and prepare the MHC for subsequent induction of transcription
Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development.
Although paediatric high grade gliomas resemble their adult counterparts in many ways, there appear to be distinct clinical and biological differences. One important factor hampering the development of new targeted therapies is the relative lack of cell lines derived from childhood glioma patients, as it is unclear whether the well-established adult lines commonly used are representative of the underlying molecular genetics of childhood tumours. We have carried out a detailed molecular and phenotypic characterisation of a series of paediatric high grade glioma cell lines in comparison to routinely used adult lines
Widespread Expression of BORIS/CTCFL in Normal and Cancer Cells
BORIS (CTCFL) is the paralog of CTCF (CCCTC-binding factor; NM_006565), a ubiquitously expressed DNA-binding protein with diverse roles in gene expression and chromatin organisation. BORIS and CTCF have virtually identical zinc finger domains, yet display major differences in their respective C- and N-terminal regions. Unlike CTCF, BORIS expression has been reported only in the testis and certain malignancies, leading to its classification as a “cancer-testis” antigen. However, the expression pattern of BORIS is both a significant and unresolved question in the field of DNA binding proteins. Here, we identify BORIS in the cytoplasm and nucleus of a wide range of normal and cancer cells. We compare the localization of CTCF and BORIS in the nucleus and demonstrate enrichment of BORIS within the nucleolus, inside the nucleolin core structure and adjacent to fibrillarin in the dense fibrillar component. In contrast, CTCF is not enriched in the nucleolus. Live imaging of cells transiently transfected with GFP tagged BORIS confirmed the nucleolar accumulation of BORIS. While BORIS transcript levels are low compared to CTCF, its protein levels are readily detectable. These findings show that BORIS expression is more widespread than previously believed, and suggest a role for BORIS in nucleolar function
Intestinal fatty-acid binding protein and gut permeability responses to exercise
Purpose
Intestinal cell damage due to physiological stressors (e.g. heat, oxidative, hypoperfusion/ischaemic) may contribute to increased intestinal permeability. The aim of this study was to assess changes in plasma intestinal fatty acid-binding protein (I-FABP) in response to exercise (with bovine colostrum supplementation, Col, positive control) and compare this to intestinal barrier integrity/permeability (5 h urinary lactulose/rhamnose ratio, L/R).
Methods
In a double-blind, placebo-controlled, crossover design, 18 males completed two experimental arms (14 days of 20 g/day supplementation with Col or placebo, Plac). For each arm participants performed two baseline (resting) intestinal permeability assessments (L/R) pre-supplementation and one post-exercise following supplementation. Blood samples were collected pre- and post-exercise to determine I-FABP concentration.
Results
Two-way repeated measures ANOVA revealed an arm?×?time interaction for L/R and I-FABP (P?<?0.001). Post hoc analyses showed urinary L/R increased post-exercise in Plac (273% of pre, P?<?0.001) and Col (148% of pre, P?<?0.001) with post-exercise values significantly lower with Col (P?<?0.001). Plasma I-FABP increased post-exercise in Plac (191% of pre-exercise, P?=?0.002) but not in the Col arm (107%, P?=?0.862) with post-exercise values significantly lower with Col (P?=?0.013). Correlations between the increase in I-FABP and L/R were evident for visit one (P?=?0.044) but not visit two (P?=?0.200) although overall plots/patterns do appear similar for each.
Conclusion
These findings suggest that exercise-induced intestinal cellular damage/injury is partly implicated in changes in permeability but other factors must also contribute
Recommended from our members
Endomucin prevents leukocyte–endothelial cell adhesion and has a critical role under resting and inflammatory conditions
Endomucin is a membrane-bound glycoprotein expressed luminally by endothelial cells that line postcapillary venules, a primary site of leukocyte recruitment during inflammation. Here we show that endomucin abrogation on quiescent endothelial cells enables neutrophils to adhere firmly, via LFA-1-mediated binding to ICAM-1 constitutively expressed by endothelial cells. Moreover, TNF-α stimulation downregulates cell surface expression of endomucin concurrent with increased expression of adhesion molecules. Adenovirus-mediated expression of endomucin under inflammatory conditions prevents neutrophil adhesion in vitro and reduces the infiltration of CD45+ and NIMP-R14+ cells in vivo. These results indicate that endomucin prevents leukocyte contact with adhesion molecules in non-inflamed tissues and that downregulation of endomucin is critical to facilitate adhesion of leukocytes into inflamed tissues
- …