1,138 research outputs found

    Comparison of dimethyl sulfoxide treated highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) electrodes for use in indium tin oxide-free organic electronic photovoltaic devices

    Get PDF
    Indium tin oxide (ITO)-free organic photovoltaic (OPV) devices were fabricated using highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the transparent conductive electrode (TCE). The intrinsic conductivity of the PEDOT:PSS films was improved by two different dimethyl sulfoxide (DMSO) treatments – (i) DMSO was added directly to the PEDOT:PSS solution (PEDOT:PSSADD) and (ii) a pre-formed PEDOT:PSS film was immersed in DMSO (PEDOT:PSSIMM). X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (CAFM) studies showed a large amount of PSS was removed from the PEDOT:PSSIMM electrode surface. OPV devices based on a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk hetrojunction showed that the PEDOT:PSSIMM electrode out-performed the PEDOT:PSSADD electrode, primarily due to an increase in short circuit current density from 6.62 mA cm−2 to 7.15 mA cm−2. The results highlight the importance of optimising the treatment of PEDOT:PSS electrodes and demonstrate their potential as an alternative TCE for rapid processing and low-cost OPV and other organic electronic devices

    Exploring Extension Agent Capacity and Readiness to Adopt Policy, Systems and Environmental Change Approaches

    Get PDF
    Introduction: Enhanced Extension outreach strategies combine traditional direct education programs with public health approaches like policy, systems, and environmental (PSE) change. However, the Cooperative Extension system and county-based Family and Consumer Sciences (FCS) Extension agents have historically prioritized direct education programming and diffusion of enhanced outreach strategies has varied. Extension personnel may lack capacity and readiness for successful PSE change implementation. This study explored perceived acceptability, capacity, and readiness for PSE change work among FCS Extension agents in two states. Method: A survey was developed framed by selected domains from the Consolidated Framework for Implementation Research: Intervention Characteristics, Inner Setting, Characteristics of Individuals, and Process. All questions utilized a 5-point Likert scale, except for an item examining respondents\u27 stage of change regarding PSE change strategies. Descriptive statistics and response frequencies for all variables were calculated. Results: Survey responses (n = 116) indicated PSE change work was perceived as valuable. Potential barriers included perceived complexity, organizational readiness issues (e.g., reporting and evaluation structures; performance incentives), and worries about stakeholder responses in shifting away from direct education. Responses indicated self-efficacy for skills important in implementing PSE change. Most respondents (53%) indicated being at the pre-contemplation or contemplation stage of change in pursuing PSE change work. Discussion: Combining PSE change strategies and direct education programming allows Extension to do what it does best – provide effective programs to improve and sustain health and wellbeing of individuals and families. Findings are informative for others aiming to build capacity within community educators, Extension and public health professionals to implement PSE change

    Audiogram of a Cook Inlet beluga whale (Delphinapterus leucas)

    Get PDF
    Author Posting. © Acoustical Society of America, 2020. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 148(5), (2020): 3141, doi:10.1121/10.0002351.Noise is a stressor to wildlife, yet the precise sound sensitivity of individuals and populations is often unknown or unmeasured. Cook Inlet, Alaska belugas (CIBs) are a critically endangered and declining marine mammal population. Anthropogenic noise is a primary threat to these animals. Auditory evoked potentials were used to measure the hearing of a wild, stranded CIB as part of its rehabilitation assessment. The beluga showed broadband (4–128 kHz) and sensitive hearing (<80 dB) for a wide-range of frequencies (16–80 kHz), reflective of a healthy odontocete auditory system. Data were similar to healthy, adult belugas from the comparative Bristol Bay population (the only other published data set of healthy, wild marine mammal hearing). Repeated October and December 2017 measurements were similar, showing continued auditory health of the animal throughout the rehabilitation period. Hearing data were compared to pile-driving and container-ship noise measurements made in Cook Inlet, two sources of concern, suggesting masking is likely at ecologically relevant distances. These data provide the first empirical hearing data for a CIB allowing for estimations of sound-sensitivity in this population. The beluga's sensitive hearing and likelihood of masking show noise is a clear concern for this population struggling to recover.The work was conducted under Permit No. MMHSRP MMPA/ESA #18786-02 to T.R. and approved via the Institute for Animal Care and Use Protocol from the Woods Hole Oceanographic Institution. This publication was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement No. NA15OAR4320063.2021-05-2

    Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    Get PDF
    © The Authors, 2011. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 8 (2011): 387-414, doi:10.5194/bg-8-387-2011.Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.This work was done under the auspices of NASA NNG06G127G, NSF grants 0748369, 0932946, 0745961 and 0832782. The work of C. J. was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101)

    Behavioral modifications by a large-northern herbivore to mitigate warming conditions

    Get PDF
    Background: Temperatures in arctic-boreal regions are increasing rapidly and pose significant challenges to moose (Alces alces), a heat-sensitive large-bodied mammal. Moose act as ecosystem engineers, by regulating forest carbon and structure, below ground nitrogen cycling processes, and predator-prey dynamics. Previous studies showed that during hotter periods, moose displayed stronger selection for wetland habitats, taller and denser forest canopies, and minimized exposure to solar radiation. However, previous studies regarding moose behavioral thermoregulation occurred in Europe or southern moose range in North America. Understanding whether ambient temperature elicits a behavioral response in high-northern latitude moose populations in North America may be increasingly important as these arctic-boreal systems have been warming at a rate two to three times the global mean. Methods: We assessed how Alaska moose habitat selection changed as a function of ambient temperature using a step-selection function approach to identify habitat features important for behavioral thermoregulation in summer (June–August). We used Global Positioning System telemetry locations from four populations of Alaska moose (n = 169) from 2008 to 2016. We assessed model fit using the quasi-likelihood under independence criterion and conduction a leave-one-out cross validation. Results: Both male and female moose in all populations increasingly, and nonlinearly, selected for denser canopy cover as ambient temperature increased during summer, where initial increases in the conditional probability of selection were initially sharper then leveled out as canopy density increased above ~ 50%. However, the magnitude of selection response varied by population and sex. In two of the three populations containing both sexes, females demonstrated a stronger selection response for denser canopy at higher temperatures than males. We also observed a stronger selection response in the most southerly and northerly populations compared to populations in the west and central Alaska. Conclusions: The impacts of climate change in arctic-boreal regions increase landscape heterogeneity through processes such as increased wildfire intensity and annual area burned, which may significantly alter the thermal environment available to an animal. Understanding habitat selection related to behavioral thermoregulation is a first step toward identifying areas capable of providing thermal relief for moose and other species impacted by climate change in arctic-boreal regions.publishedVersio

    An Empiricist’s Guide to Using Ecological Theory

    Get PDF
    A scientific understanding of the biological world arises when ideas about how nature works are formalized, tested, refined, and then tested again. Although the benefits of feedback between theoretical and empirical research are widely acknowledged by ecologists, this link is still not as strong as it could be in ecological research. This is in part because theory, particularly when expressed mathematically, can feel inaccessible to empiricists who may have little formal training in advanced math. To address this persistent barrier, we provide a general and accessible guide that covers the basic, step-by-step process of how to approach, understand, and use ecological theory in empirical work. We first give an overview of how and why mathematical theory is created, then outline four specific ways to use both mathematical and verbal theory to motivate empirical work, and finally present a practical tool kit for reading and understanding the mathematical aspects of ecological theory.We hope that empowering empiricists to embrace theory in their work will help move the field closer to a full integration of theoretical and empirical research

    Source, sea and sink—A holistic approach to understanding plastic pollution in the Southern Caribbean

    Get PDF
    Marine plastics are considered to be a major threat to the sustainable use of marine and coastal resources of the Caribbean, on which the region relies heavily for tourism and fishing. To date, little work has quantified plastics within the Caribbean marine environment or examined their potential sources. This study aimed to address this by holistically integrating marine (surface water, subsurface water and sediment) and terrestrial sampling and Lagrangian particle tracking to examine the potential origins, flows and quantities of plastics within the Southern Caribbean. Terrestrial litter and the microplastics identified in marine samples may arise from the maritime and tourism industries, both of which are major contributors to the economies of the Caribbean region. The San Blas islands, Panama had the highest abundance of microplastics at a depth of 25 m, and significantly greater quantities in surface water than recorded in the other countries. Modelling indicated the microplastics likely arose from mainland Panama, which has some of the highest levels of mismanaged waste. Antigua had among the lowest quantities of terrestrial and marine plastics, yet the greatest diversity of polymers. Modelling indicated the majority of the microplastics in Antiguan coastal surface were likely to have originated from the wider North Atlantic Ocean. Ocean currents influence the movements of plastics and thus the relative contributions arising from local and distant sources which become distributed within a country's territorial water. These transboundary movements can undermine local or national legislation aimed at reducing plastic pollution. While this study presents a snapshot of plastic pollution, it contributes towards the void of knowledge regarding marine plastic pollution in the Caribbean Sea and highlights the need for international and interdisciplinary collaborative research and solutions to plastic pollution

    Evidence for Reflected Light from the Most Eccentric Exoplanet Known

    Get PDF
    This is an author-created, un-copyedited version of an article published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.3847/0004-637X/821/1/65.Planets in highly eccentric orbits form a class of objects not seen within our solar system. The most extreme case known among these objects is the planet orbiting HD20782, with an orbital period of 597days and an eccentricity of 0.96. Here we present new data and analysis for this system as part of the Transit Ephemeris Refinement and Monitoring Survey. We obtained CHIRON spectra to perform an independent estimation of the fundamental stellar parameters. New radial velocities from Anglo-Australian Telescope and PARAS observations during periastron passage greatly improve our knowledge of the eccentric nature of the orbit. The combined analysis of our Keplerian orbital and Hipparcos astrometry show that the inclination of the planetary orbit is >1.22, ruling out stellar masses for the companion. Our long-term robotic photometry show that the star is extremely stable over long timescales. Photometric monitoring of the star during predicted transit and periastron times using Microvariability and Oscillations of STars rule out a transit of the planet and reveal evidence of phase variations during periastron. These possible photometric phase variations may be caused by reflected light from the planet’s atmosphere and the dramatic change in star–planet separation surrounding the periastron passage.Peer reviewedFinal Accepted Versio

    Evidence for reflected light from the most eccentric exoplanet known

    Get PDF
    Planets in highly eccentric orbits form a class of objects not seen within our Solar System. The most extreme case known amongst these objects is the planet orbiting HD 20782, with an orbital period of 597 days and an eccentricity of 0.96. Here we present new data and analysis for this system as part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS). We obtained CHIRON spectra to perform an independent estimation of the fundamental stellar parameters. New radial velocities from AAT and PARAS observations during periastron passage greatly improve the our knowledge of the eccentric nature of the orbit. The combined analysis of our Keplerian orbital and Hipparcos astrometry show that the inclination of the planetary orbit is > 1.25 degrees, ruling out stellar masses for the companion. Our long-term robotic photometry show that the star is extremely stable over long timescales. Photometric monitoring of the star during predicted transit and periastron times using MOST rule out a transit of the planet and reveal evidence of phase variations during periastron. These possible photometric phase variations are likely caused by reflected light from the planet's atmosphere and the dramatic change in star--planet separation surrounding the periastron passage
    • …
    corecore